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Abstract
Drug–target interaction is crucial in the discovery of new drugs. Computational methods can be used to identify new drug–
target interactions at low costs and with reasonable accuracy. Recent studies pay more attention to machine-learning methods, 
ranging from matrix factorization to deep learning, in the DTI prediction. Since the interaction matrix is often extremely sparse, 
DTI prediction performance is significantly decreased with matrix factorization-based methods. Therefore, some matrix fac-
torization methods utilize side information to address both the sparsity issue of the interaction matrix and the cold-start issue. 
By combining matrix factorization and autoencoders, we propose a hybrid DTI prediction model that simultaneously learn the 
hidden factors of drugs and targets from their side information and interaction matrix. The proposed method is composed of 
two steps: the pre-processing of the interaction matrix, and the hybrid model. We leverage the similarity matrices of both drugs 
and targets to address the sparsity problem of the interaction matrix. The comparison of our approach against other algorithms 
on the same reference datasets has shown good results regarding area under receiver operating characteristic curve and the area 
under precision–recall curve. More specifically, experimental results achieve high accuracy on golden standard datasets (e.g., 
Nuclear Receptors, GPCRs, Ion Channels, and Enzymes) when performed with five repetitions of tenfold cross-validation.
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Introduction

One of the main areas of drug discovery and repositioning 
is identifying drug–target interactions [1]. Re-using drugs, 
which have been approved by the FDA and whose safety 
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profiles are readily available, for new interactions not only 
reduce costs but also decrease safety risks [2]. However, 
despite various technologies for biological assays, there are 
still limitations related to large-scale drug–target interactions 
(DTI). In addition, due to its high cost and lack of public 
experiments for drug repositioning, developing effective 
computational methods that can precisely detect drug–target 
interactions is essential.

There are three basic categories of computational 
approaches that have been developed for predicting new 
DTIs today [3]. The first category makes use of similar 
molecules and similar ligands of target proteins [4], known 
as the ligand-based approach. In some cases, ligand-based 
methods may not provide accurate results if there are not 
enough known ligands for a target [5]. The second cate-
gory, namely molecular docking, leverages the 3D struc-
ture of the target proteins for the small molecule screen-
ing [6]. This approach is limited by the requirement of the 
target protein's 3D structures [7]. These methods cannot 
predict new drug–target pairs if 3D structures of proteins 
cannot be derived. Predicting the 3D structure of most tar-
gets, especially those related to membrane proteins, such 
as GPCRs, is a challenge [8]. The third category, denoted 
by chemogenomic approaches, utilizes the information of 
both target and drug together to predict DTI. A benefit of 
chemogenomic is the ability to access data from many online 
public databases. For instance, Wen et al. [9] conducted DTI 
prediction using the chemical structure graphs of drugs and 
genomic sequences of targets, which can be easily obtained 
from online databases. Unlike the other two approaches, 
this approach is free of the mentioned limitations. For DTI 
predictions, methods based on chemogenomic typically use 
machine-learning and deep-learning methods.

As experimental data have grown, deep-learning meth-
ods have gained popularity for predicting DTIs [10]. Due 
to the ability of deep-learning approaches to extract useful 
features derived from the input data and build complex 
models that can capture even difficult patterns in DTIs, 
they are preferred over alternative methods. Deep learn-
ing has been used in several studies to learn automatically 
high-level feature representation from the training data 
and is beneficial in many bioinformatics tasks [11–14]. 
Deep-learning approaches are commonly used to solve 
the problem of DTI prediction, which is modeled as a 
supervised classification problem. The features extracted 
from a drug–target pair are taken as the input, and then 
the interaction between the drug–target pair (DTP) is pre-
dicted as the output. In a paper by Wen et al. [9], a deep-
learning method, named DeepDTI, is adapted using a deep 
belief network (DBN) for predicting the affinity value for 
pairs of drugs and targets. The features of drugs can be 
extracted automatically from extended-connectivity fin-
gerprints (ECFP), and the features of target proteins have 

been extracted from amino acids, dipeptides, and tripep-
tides. Subsequently, Zeng et al. [15] utilize ten networks 
to predict DTI using a deep-learning-based method called 
DeepDR. Peng et al. [16] present a method for learning 
hidden latent features from RNA and protein sequences, 
using stacked autoencoders, and then training a support 
vector machine (SVM) on this representation. In addition, 
Fu et al. [13] employ stacked autoencoders to automati-
cally learn high-level features of miRNAs and diseases, 
which are used in Deep Neural Network (DNN) to predict 
miRNA disease associations. Ozturk et al. [17] develop 
an approach to predict DTI using a convolutional neural 
network (CNN) to learn the features of drugs and proteins. 
Gligorijević et al. [14] propose a multimodal deep autoen-
coder (MDA) based on deep learning, in which multiple 
networks are merged to learn low-dimensional protein fea-
tures using MDA. They train an SVM to predict protein 
functions from low-dimensional protein features. More-
over, Lee et al. [18] present the DeepConv-DTI model 
that predicts massive-scale DTIs based on raw protein 
sequences for several target protein classes and varying 
lengths. In their approach, convolution filters are applied 
to the whole sequence of the protein to catch patterns of 
local residues. Subsequently, to predict the affinity values, 
protein features and drug features are concatenated and 
then fed into fully connected layers. The mentioned work 
confirms that deep learning is capable of learning high-
level features from original data in a very efficient and 
effective manner, which improves the performance of the 
methods and enabled them to achieve acceptable results.

Matrix Factorization (MF) approaches to DTI prediction 
learn effective latent factors directly from the drug–target 
interaction matrix. However, due to the high sparsity of the 
interaction matrix learning, the appropriate latent factors 
are significantly compromised in such methods. Addition-
ally, the cold-start problem can limit the use of MF-based 
methods for predicting interactions when a new drug or 
target arrives in the system. In this paper, we benefit from 
additional side information to overcome these issues in MF-
based methods. The side information can be gained from 
drug and target content information, such as the drug chemi-
cal structure, protein amino acid sequence, etc. Other works 
have already integrated side information into matrix fac-
torization to determine effective latent factors via a hybrid 
MF setup [1, 19–21]. Even so, these approaches use the 
side information as regularizations and learned latent fac-
tors often are insufficient, specifically when the interaction 
matrix is very sparse. Thus, such information can be valu-
able in resolving the latent factor problem. Therefore, we 
extend the hybrid matrix factorization model with a deep 
structure to fully explore the latent space of the features 
and address the above-mentioned challenges. The deep-
learning model in this framework is called the additional 
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stacked denoising autoencoder (aSDAE) [22], which incor-
porates the side information into the deep structure input for 
addressing the cold-start and data sparsity problems. Using 
this approach, we develop the hybrid model that couples 
deep-learning representation from the additional side infor-
mation and matrix factorization from the interaction matrix. 
We future evaluate our proposed method compared to six 
other state-of-the-art methods, namely DDR [23], DNILMF 
[24], NRLMF [21], KronRLS-MKL [25], BLM-NII [26], 
and COSINE [27] via cross-validation (CV), in which, the 
performance of approaches are assessed three settings: new 
drugs, new interactions, and new targets. Our proposed 
method shows improved results compared to most previ-
ous models when applied to new target and drug cases (by 
excluding their interaction) to test.

Methods

Preliminaries

In this section, we first discuss how to formulate the problem 
discussed in this paper, and then followed by a brief review 
of Matrix Factorization and Additional Stacked Denoising 
Autoencoder.

Problem definition

The datasets are composed of three matrices ∶ R ∈ ℝ
m×n

,Sd ∈ ℝ
m×m , and St ∈ ℝ

n×n . Drug–target interactions are 
encoded by the sparse interaction matrix R , which is made 
up of m drugs as rows and n targets as columns. Each 
entry Rij= 1 ofR , means that the drug i has an interac-
tion with target j , otherwise Rij = 0. Each drug or target 
interaction profile is specified by Rd andRt , respectively. 
In the case of each drug d, a partially observed vector 
Rd = (Rd1,… ..Rdn) ∈ ℝ

n can be described. Identically, 
In the case of each target t, a partially observed vector 
Rt =

(
R1t,… ..Rmt

)
∈ ℝ

m can be described. The matrix Sd 
expresses the similarities between drug pairwise chemi-
cal structures, and the matrix St expresses the similarities 
between target pairwise genomic sequences. For drugs 
similarity, SIMCOMP scores are used [28], whereas 
Smith-Waterman scores are used for targets similarity [29]. 
Moreover, the side information matrix of drugs and targets 
are indicated by X ∈ ℝ

m×p andY ∈ ℝ
n×q , respectively.

Let ui , vj ∈ ℝk be latent factor vector of drug i and 
target j , respectively, and latent space is characterized 
by k dimensions. Thus, to determine the matrix forms 
of latent factors for drugs and targets, we have U = u1∶m 
andV = v1∶n , respectively. By learning drug and target 
latent factors U and V  from the sparse interaction matrix 

R and the side information matrix X andY  , it is possible to 
predict the missing interaction inR.

Matrix factorization

By factorizing the interaction matrix, matrix factorization 
can map both drugs and targets to a joint latent factor 
space [30]. Therefore, drug–target interactions are mod-
eled as inner products in that latent factor space. In the 
case of DTI prediction, when matrix factorization is per-
formed, the original interaction matrix R is split into two 
low-rank matrices U ∈ ℝ

m×k and V ∈ ℝ
n×k , consisting of 

the drug and target latent factor vectors, respectively, such 
that R ≈ UVT . Matrix factorization can identify latent fea-
tures of drugs and targets in an unsupervised manner. A 
matrix factorization technique may be effective for finding 
missing interactions in a matrix R, making it appropri-
ate for DTI prediction. The objective function of matrix 
factorization is

Loss function L(., .) measures the distance between two 
matrices with the same size, the Regularizations are used 
to prevent overfitting by the two last terms and ‖.‖f  denotes 
the Frobenius norm.

Additional stacked denoising autoencoder

Denoising autoencoders (DAE) are neural networks that 
unsupervised encode input data without requiring labels 
as ground truths [31].The autoencoder is composed of two 
networks: one encoder and one decoder that take an input 
domain as input and then reconstruct it [32]. As the encoder 
g(.) converts the input Y  to a hidden factor g(Y) , the decoder 
f (⋅) converts this hidden factor back to a reconstructed ver-
sion of Y  , such that f (g(Y)) ≈ Ŷ  . Several autoencoders have 
recently been presented, including the denoising autoen-
coder, sparse autoencoder, and variational autoencoder [33]. 
Noise is injected to the input in denoising autoencoders, 
forcing the network to reconstruct the denoised input [34]. 
One approach for adding noise is to replace random fractions 
of the input with zeros. Here, we use from additional denois-
ing autoencoder (aDAE) that extends the denoising autoen-
coder by adding additional side information into the input 
data [22]. The additional denoising autoencoder (aDAE) 
considers random corruptions over Y  and X to obtain Ŷ  and 
X̂ if Y = [y1,… yn ] and X = [x1,… .xn] . A stacked denois-
ing autoencoder (SDAE) stacks several denoising autoen-
coders together to form a higher-level representation [35]. 
We stacked multiple aDAE together to form an additional 

(1)argminU,VL
�
R,UVT

�
+ �

�
‖U‖2

f
+ ‖V‖2

f

�
,
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stacked denoising autoencoder (aSDAE). The inputs are 
encoded and decoded for aDAE model as follows:

A hidden representation hl is computed for each hidden 
layer L�{1,… , L − 1} of the aSDAE model as follows:

Ỹ  and X̃ stand for the corrupted version of Y  and X , Ŷ  and 
X̂ represent the reconstructions of Y  and X , h stands for the 
latent representation of the inputs, b is bias vector and W 
and V  are weight matrices, and g (·) and f  (·) are activation 
functions such as sigmoid(·). Figure 1 shows the model of 
aSDA. Theoretically, the aSDAE model's objective function 
is formulated as follows:

Here � is a trade-off parameter used to balance the out-
puts, while � is a regularization parameter. Using the back-
propagation algorithm, we can learn Wl , Vl , and bl for each 
layer. The aSDAE reconstructs inputs using a deep network 
and minimizes the squared loss between inputs and their 
reconstructions. Since there are L layers in total, latent fac-
tors are derived from the L∕2 layer.

Proposed method

The proposed method for predicting DTI is explained in this 
section, which involves two steps:

(2)

h = g
(
W

1
Ỹ + V

1
X̃ + b

1

)

Ŷ = f
(
W

1
h + bŝ

)

X̂ = f (V
1
h + bx̂)

.

(3)

h = g
(
W

1
Ỹ + V

1
X̃ + b

1

)

Ŷ = f
(
Wlhl + bŝ

)

X̂ = f (Vlhl + bx̂)

.

(4)
argminW,V ,b�‖Y − Ŷ‖

2

f
+ (1 − �)‖X − X̂‖

2

f
+ �(

�
‖wl‖2f + ‖Vl‖2f ).

1. Pre-processing is the first step, which involves convert-
ing binary values in DTI matrix, R, into interaction like-
lihood values;

2. In the second step, we will propose our hybrid model to 
predict DTIs that uses matrix factorization coupled with 
stacked denoising autoencoders.

Pre‑processing step

Creating a model for DTI can be challenging since, although 
interactions (positive values Rij = 1 ) are known, some of the 
non-interactions (or 0's) in R may actually be true interac-
tions. Therefore, in most approaches [36], negative samples 
are selected at random from the unknown data. However, 
this might lead to inaccurate results. Due to the fact that the 
drug–target interaction matrix is based only on interactions 
between drugs and targets, only using the interaction matrix 
when additional information regarding the drugs and the 
targets is available can sound restrictive. As a result, we 
intend to solve this issue by adding information on similarity 
matrix of drugs and targets to the interaction matrix. In order 
to calculate interaction likelihood values for these unknown 
instances, we adapt the WKNKN approach, which was based 
on the procedure described in [36] as a pre-processing step 
that uses similarity matrices of drugs and targets. There-
fore, if Rij is 0, WKNKN replaces it with a continuous value 
between 0 to 1. It is important to note, WKNKN uses K 
nearest known neighbors to infer the likelihood value of 
interactions between drug and target pairs.

The hybrid model

We develop a hybrid model with a combination aSDAE and 
matrix factorization that using from both interaction matrix 
and side information of drug and target for DTI predic-
tion. Matrix factorization is one of the most widely used 
collaboration filtering methods, with good scalability and 
accuracy, and SDAE extracts high-level representations from 

Fig. 1  The model of aSDAE 
[22]
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raw inputs. These two models are merged to create a more 
expressive learning model leveraging their benefits.

It is assumed that the input of model is a drug–target 
interaction matrix R , we first encode R into the set Rd con-
t a i n i n g  m  i n s t a n c e s  {  R(d)

1
,… ,R(d)

m
 } ,  w h e r e 

R
(d)

i
= {Ri1,… ,Rin} represent interaction of drug i on all the 

targets. Similarly, we can encode set R(t) with n 
instances

{
R
(t)

1
,…R(t)

n

}
 , where Rt

j
 = 
{
R1j,… .Rmj

}
 represent 

interaction of target j on all the drugs. Let R̃d and R̃t denote 
their corrupted versions, respectively. In addition, X ∈ ℝm×p 
and Y  ∈ ℝn×q are the additional side information also drug 
chemical structure and protein sequence composition 
descriptors (PSC) matrices, respectively, and corrupted ver-
sions are X̃ and Ỹ .

We select the most common and simple features of drugs 
and targets in the present paper, representing the drugs 
with molecules by SMILES (simplified molecular-input 
line-entry system) and targets with sequence composition 
descriptors. The fingerprints of drugs can be used as addi-
tional information about drugs to the proposed method. 
SMILES [37] strings, a sequential encoding of chemical 
structures, are used to represent each drug in the first step. 

This is followed by using the PaDEL-descriptor software 
to create fingerprints from SMILES strings. With PaDEL-
descriptor, molecular descriptors (1D, 2D, and 3D) and ten 
different kinds of fingerprints can be computed [38]. Drugs 
can be described by a binary vector with an index indicating 
the existence of specific substructures, with a length of 800. 
Also, our approach uses protein sequence composition as 
additional side information of targets. There are three major 
components to PSC: amino acid composition (AAC), dipep-
tide composition (DC), and tripeptide composition (TC). 
Every frequency of amino acids is called the AAC. Every 
two amino acid combinations have a statistical frequency 
called the DC. Every three amino acid combinations have a 
statistical frequency called the TC. Open-Source Software 
Propy [39] is used to calculate the protein descriptors. Each 
protein sequence composition is described by a 567-dimen-
sional feature vector.

The inputs of the hybrid model areR̃d , R̃t , X̃ , Ỹ , andR . In 
the hybrid model, drug and target latent factors (i.e., U andV ) 
are learned fromR , R̃d , R̃t , X̃  andỸ .

Our hybrid model is shown in Fig. 2 and then is formu-
lated as follows:

Fig. 2  The structure of 
proposed hybrid model and 
WKNKN pre-processing 
method. Three components 
make up the hybrid model: the 
upper component, the lower 
component, and middle com-
ponent. The upper component 
and a lower component, which 
extract latent factors from drugs 
and targets, respectively; the 
middle component decomposes 
R into two latent factors
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The first term of the loss function is applied to decompose 
the interaction matrix R into V  and U latent factor matrices. 
Here, I is an indicator matrix that shows the non-empty enti-
ties in R . Our aSDAE model extracts latent factor matrices 
from the interaction matrix, along with drug and target fea-
tures, as in the last four terms of loss functions are repre-
sented, respectively.

Here,�1 , �2 are the trade-off parameters, and freg is the 
regularizing terms that prevent the model from overfit-
ting.Wl , Vl and W ′

l
 , V ′

l
 represent the weight matrices of 

aSDAE at layerl . Also, bl and b′

l
 are the bias vectors. For 

the regularization parameter is used from�.

In most cases, the middle layers of two aSDAEs act as 
a link between the interaction matrix and the feature of 
drugs and targets. These two middle layers are the key 
ability of our hybrid model to learn latent factor variables 
while also capturing the relationship between drug and 
target.

Prediction

We estimate the predicted interaction Rij as Rij≈UiV
T
j

 after 
learning the latent factors for each drug and target and then 
construct a list of targets for each drug based on these 
prediction interactions.

(5)

L =
∑

i,j

Iij

(
Rij − UiV

T
j

)2

+ 𝛼1

∑

i

(
R
(d)

i
− R̂

(d)

i

)2

quad +
(
1 − 𝛼1

)∑

i

(
Xi − X̂i

)
+ 𝛼2

∑

j

(
R
(t)

j
− R̂

(t)

j

)2

+
(
1 − 𝛼2

)∑

j

(
Yj − Ŷj

)2
+ 𝜆 ⋅ freg

freg =
∑‖‖Ui

‖‖
2

f
+
∑‖‖‖Vj

‖‖‖
2

f

+
∑

l

(
‖‖Wl

‖‖
2

f
+ ‖‖Vl

‖‖
2

f
+ ‖‖bl‖‖ +

‖‖‖W
�

l

‖‖‖
2

f
+
‖‖‖V

�

l

‖‖‖
2

f
+
‖‖‖b

�

l

‖‖‖
2

f

)

.

Results

In this section, initially, we introduce the dataset. Second, we 
describe CV and the metrics to evaluate our model. Third, 
parameter settings are presented. And then we compare our 
model with some baseline approaches. Ultimately, the per-
formance of the model is presented by comparing it with 
the baselines.

Dataset

We evaluate our proposed approach by using the benchmark 
dataset introduced in [40]. The target proteins in this data-
set are nuclear receptors (NR), G protein-coupled receptors 
(GPCR), ion channels (IC), and enzymes (E). For each data-
set, we present a few statistics in Table 1. These include the 
number of unique proteins, number of unique drugs, and 
number of interactions and as well as the sparsity coefficient, 
which relates the number of known DTIs to the total number 
of DTIs.

Cross‑validation experiments

Using the three procedures represented in [41], we perform a 
cross-validation investigation to make a complete evaluation 
of different methods:

(1) Sp refer to random pairs of target and drug which are 
ignored and considered as the test set;

(2) Sd , To refer to the whole drug interaction profiles, 
which are ignored and considered as the test set; and.

(3) St refer to the whole target interaction profiles, which 
are ignored and considered as the test set.

Traditionally, performance is evaluated using Sp . In 
addition, we assess various approaches for predicting new 

Table 1  Drugs, targets, interactions, and sparsity in each benchmark 
dataset

Datasets NR GPCR IC E

No. of drugs 54 223 210 445
No. of targets 26 95 204 664
No. of interactions 90 635 1476 2926
Sparsity 0.064 0.03 0.034 0.01

Table 2  Results of the proposed approach based on AUC and AUPR 
validation metrics, under three different CV settings Sp , Sd,St and 
datasets NR, GPCR, IC, and E by five repeats of tenfold CV

Hybrid model NR GPCR IC E

Sp

 AUPR 0.93 0.94 0.98 0.97
 AUC 0.90 0.98 0.99 0.99
Sd

 AUPR 0.65 0.55 0.56 0.54
 AUC 0.69 0.56 0.58 0.63
St

 AUPR 0.57 0.53 0.60 0.77
 AUC 0.67 0.63 0.61 0.79
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interactions drugs and targets using Sd and St CV. In this 
case, drugs and targets that have no interaction information 
in the training set are considered new ones. So, conduct-
ing an experiment under Sd and St provide insight into the 
generalizability of the proposed approach. Similar to previ-
ous studies, for evaluation of prediction performance, we 
use area under receiver operating characteristic (AUC) and 
area under precision–recall curve (AUPR). To compare our 
proposed method with current methods, we conduct experi-
ments to compare it to DDR, DNILMF, NRLMF, KRON-
RLS-MKL, BLM-NII, and COSINE. We evaluate the per-
formance of DTIs prediction methods by performing five 
repeats of tenfolds cross-validation, and we use AUC as well 
as AUPR [42] as evaluation metrics. Each fold in the interac-
tion dataset was treated as the test set, whereas the rest of the 
nine folds were applied as the training set. The AUPR scores 
are calculated by averaging the results of five repetitions. To 
evaluate performance, we use AUPR as our primary metric 
in all experiments. Since the AUPR punishes wrong interac-
tions strongly, it is an appropriate measure [43].

Parameter settings

A benchmark database [40] is used to conduct experiments. 
We modify the number of hidden units and layers in our pro-
posed model to evaluate its performance. Our study found 
that performance increases regularly with two hidden layers. 
From a sigmoid activation function is used in each layer. 
Using a nonlinear activation function in the hidden layer 
is necessary for the hybrid model to perform well. We set 
the parameters �1 and �2 to 0.6 and 0.4, respectively. We set 
the regularization coefficient (λ) to 10−6 and also the learn-
ing rate to 0.001. We do finetune by gradient-based back-
propagation with a minibatch of 100 samples. We select the 
number of latent features (k) in the hybrid model for IC, 
GPCR, and E datasets to 25, and the NR dataset to 15. The 
epochs of neural network frameworks are at 200.

Comparisons with the state‑of‑the‑art algorithms

The proposed hybrid method computes AUC and AUPR 
scores on NR, GPCR, IC, and E datasets. The AUPR and 
AUC scores for Sp , Sd , and St test sets are shown in Table 2. 
The ROC and AURP curves of the first repeat of tenfold 
cross-validation on four datasets are shown in Fig. 3. The 
average AUC and average AUPR of our hybrid model 
in the first repeat of tenfold CV are the mean-AUC and 
mean-AUPR.

Baseline approaches

We compare six state-of-the-art DTI prediction methods, 
including DDR, DNILMF, NRLMF, KronRLS-MKL, BLM-
NII, and COSINE, to our hybrid model for prediction perfor-
mance on NR, GPCR, IC, and E datasets with three various 
scenarios of CV.

DDR

In DDR, a heterogeneous network is used to represent not 
only the known DTIs, but also multiple similarities between 
drugs and targets. The DDR method combines different 
similarities through a nonlinear fusion method. As a pre-
processing step, DDR selects a subset of similarities in a 
heuristic method to produce the optimal combination of 
similarities before fusion. After that, manual extraction of 
different graph-based features is performed from the DTI 
heterogeneous graph. Ultimately, random forest (RF) is used 
to predict DTIs from feature matrices.

KronRLS‑MKL

The first step is to combine multiple drug kernels and tar-
get kernels to obtain the final drug kernel and target kernel. 
KronRLS analyzes the entire drug–target space and uses the 
Kronecker product algebraic properties to do so, without 
explicitly calculating the pairwise kernels. Ultimately, it 
predicts DTIs using Kronecker’s regularized least squares.

NRLMF

In NRLMF, features of drugs and features of targets are 
modeled as latent vectors in latent space that are shared 
in a low-dimensional manner. The interaction probability 
between each drug and target is estimated using a logistic 
function of their latent vectors. In addition, the neighborhod 
regularization technique is used to enhance the ability of 
the model to predict DTIs based on the local structure of 
the DTIs data.

BLM‑NII

A BLM-NII approach integrates neighbor-based interaction-
profile inferring (NII) with the bipartite local models (BLM) 
to provide DTI predictions that are based on the RLS clas-
sifier and GIP kernel.

In our paper, we demonstrate that our hybrid model, using 
five repeats of tenfold CV, generates better AUPR results 
than other methods. According to Fig. 4, based on AUPR 
metric, under the scenario CV of Sp , the hybrid model on 
every four datasets conduct better than DDR that is the most 
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appropriate baseline method. Our hybrid model accom-
plishes results that are 10%, 15%, 6%, and 5% better than 
DDR for the NR, GPCR, IC, and E datasets, respectively. 
On all datasets, the our hybrid model outperforms all other 
approaches other than the DDR approach under of AUPR 
metric and the cross-validation of  Sd , St.

Discussion

This paper presents a hybrid DTI prediction model with the 
help aSDAE and matrix factorization. Our hybrid model 
learns effective latent factors from both drug–target interac-
tion matrix and side information for drugs and targets. As 
part of the evaluation of the proposed work, we have pub-
lished results that show our hybrid model outperforms other 
state-of-the-art methods on a set of datasets, with different 
CV settings, as well as using AUPR and AUC as perfor-
mance metrics. We can observe from Table 2 that DDR and 
our hybrid model achieve better performance than the rest of 
the approaches when known DTIs are missing in the train-
ing data. Additionally, it shows how effective it can be to 
incorporate additional side information. Our method utilizes 
drug fingerprints as additional side information of drug and 
protein sequence composition descriptors as additional side 
information of targets.

We observed that the DDR method was the best second 
method for predicting DTI in Sp cross-validation settings and 
the best first method in Sd and St cross-validation settings, 
using the AUPR metric on the different datasets.

DDR employs a heterogeneous drug–target graph con-
taining information about various similarity sets between 
drugs and similarity sets between protein targets. Compared 
to our hybrid model, the DDR produces better results in Sd 
and St . One reason may be the use of the nonlinear similarity 
fusion method to merge various similarities between drugs 
and targets, thereby smoothing their prediction and presum-
ably ensuring greater accuracy of their prediction by relying 
on neighbor information based on the idea that similarity 
improves accuracy. So, the DDR model performs better 
results in both Sd and St cross-validation settings.

Our hybrid model outperforms methods based on MF 
(NRLMF, DNILMF), particularly in AUPR. In traditional 
MF models, latent factors are learned linearly, whereas our 
hybrid model uses a sigmoid activation function to learn 
nonlinear latent factors. As a result, our proposed method 

learns sufficient and powerful features by using denoising 
autoencoders to predict true DTIs. Using autoencoders in 
the hybrid model also has the advantage of filling in all vec-
tors that are not present in the training data, which is why it 
is superior to the MF method. Furthermore, deep structures 
can enhance the feature quality of side information. Thus, 
from Table 2, we can see that our hybrid model validates 
the strengths of the latent factor vectors learned by aSDAE 
models. Therefore, the AUPR metric demonstrates the effec-
tiveness of our hybrid model. The hybrid model outperforms 
the MF by a large gap, indicating that neural networks have a 
strong potential to learn nonlinear representations, whereas 
MF models only on linear features.

Therefore, our hybrid model can integrate both the DTI 
matrix and the side information well because we seamlessly 
integrate aSDAE models for the side information and matrix 
factorization for the DTI matrix, and learn a more powerful 
latent factor for each drug and target, and hence, provide a 
much more precise prediction.

Fig. 3  For each dataset, the ROC curves and precision–recall curves 
for the first repeat of tenfold CV are shown. a The precision–recall 
curve and ROC curve for the NR dataset; b The precision–recall and 
ROC curves for the GPCR dataset; c The precision–recall and ROC 
curves for the IC dataset; d The precision–recall and ROC curves for 
the E dataset
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Fig. 4  Comparison results of hybrid method with the six states-of-
the-art methods DDR, DNILMF, NRLMF, KRONRLS-MKL, BLM-
NII, and COSINE based on AUPR scores, five repeats of tenfold CV. 
On all datasets, Sp , Sd , and St settings are used to obtain results. Based 
on the best published parameters, the DDR, DNILMF, NRLMF, 
KRONRLS-MKL, BLM-NII, and COSINE results were generated
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Conclusion

We introduced a new matrix factorization model with a deep 
structure to predict DTIs that combines aSDAE deep neural 
network with matrix factorization. Our proposed approach 
included two steps. Initially, a pre-processing step was done 
for replacing miss values in the sparse drug–target interac-
tion matrix with continuous values in the range 0 to 1. Pre-
processing did this work by helping drug and target similar-
ity matrix. In the second step, we presented a hybrid model 
based on stack denoising autoencoders and matrix factoriza-
tions to create an unsupervised deep-learning method. In our 
hybrid model, effective latent factors have been learned from 
the DTI matrix, side information of drugs, and side informa-
tion of targets. The aSDAE was built on SDAE in order to 
learn latent factors by incorporating side information. Using 
cross-validation methods Sp , Sd , and St on all datasets, and 
evaluating performance using different metrics, our hybrid 
model provides much superior outcomes than other state-of-
the-art approaches. In future work, we will develop our mod-
els with other deep-learning models like recurrent neural 
networks and convolutional neural networks to improve their 
performance. Also the cross-validation setting S4 [41] is 
known to be challenging since the drugs and targets used in 
training do not appear in the test set. In terms of predicting 
interactions under S4, we believe that hybrid MF approaches 
with deep learning can provide useful deep representations 
of drugs, targets, and interactions for incraseing of accuracy 
of DTI prediction. Future work will confirm this.
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