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Abstract. We study pairwise preference data to model the behavior of
users in online recommendation problems. We first propose a tensor ker-
nel to model contextual transactions of a user in a joint feature space.
The representation is extended to all users via hash functions that allow
to effectively store and retrieve personalized slices of data and context.
In order to quickly focus on the relevant properties of the next item to
display, we investigate the utility of Monte-Carlo Tree Search (MCTS)
on the learned preference values. Empirically, on real-world transaction
data, both the preference models as well as the search tree exhibit excel-
lent performance over baseline approaches.

Keywords: Preference learning · Tensor kernel · Personalization ·MCTS.

1 Introduction

Understanding user behavior is essential in many recommendation tasks involv-
ing implicit feedback. Several approaches have been aimed to capture charac-
teristic traits of users by analyzing data, ranging from atomic user actions such
as clicks and purchases to their entire navigation patterns. Nevertheless, for the
vast majority of users, the available data is very limited. User clicks do not
per se express an interest in an item, purchases are generally rare events, by
definition, and a reliable analysis of navigation patterns requires regular (and
possibly frequent) visits of the same user. Maintaining an individual model for
every user bears another caveat; besides retrieval and maintenance costs, again
only heavy hitters will really benefit from such an approach. Therefore, there is
a great need for techniques that leverage all available data so that every user
benefits, irrespectively of their amount of data.

In this paper, we explore pairwise preference data to study the behavior of
users in online recommendation problems. We propose to use qualitative feed-
back in form of pairwise preferences as the lever. Preference data discloses the
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true interests of a user and have often served as a reliable source of information
[8, 10]. However, preferences highly depend on the context of the user. We use
results from tensor theory to propose a transaction kernel that maps multiple
data sources into a joint feature space (e.g., the user’s click history, context, de-
mographics, etc.). Hash functions augment data from other users into this space
such that user slices can be efficiently stored and retrieved. The kernel can be
extended to pairwise preference data and a preference learning algorithm such
as SVMrank [12] can be used to obtain personalized preference models.

Furthermore, we introduce an online search technique to recommend the
most relevant items to the actual user and context. We thus benefit from the
personalized preference models as a utility function to conduct such informed
sampling in product recommendation tasks. The utility function needs to be
maximized in order to identify the optimal item(s), i.e., those items that are most
likely to be clicked on by the user in a given context according to the learned
model. A näıve approach for computing the best item to recommend is exhaustive
search over all possible items and return the one with the maximum value. An
anytime version of this algorithm returns the product with the highest value
among those that have been seen so far. To improve this, we employ a variant
of Monte Carlo Tree Search (MCTS) which allows to quickly focus on items
with desirable features. Our results show that the MCTS variant returns better
recommendations in cases where the number of sampled products is limited.
The main contribution of our paper is therefore presenting a highly efficient
approach for modeling user behavior in online recommendation scenarios which
is remarkably effective.

2 Related Work

Personalized recommender systems range from collaborative-based methods [20,
11] and matrix factorization [15], to contextual and session-based approaches
[26, 29, 16]. Recommender systems leverage quantitative feedback either in form
of explicit ratings or implicit views to retrieve items of interest to the user.

An alternative viewpoint constitutes scenarios that are based on feedback in
form of user preferences [10]. Preference learning describes a family of learning
problems where the target information is not necessarily given, but preferences
between options are known; the task is to predict an ordering between these
options [8]. One can distinguish between object ranking problems [13], and label
ranking problems [28]. Both problems can be approached in different ways. We
formalize our problem as an object ranking task, that we address by learning
an underlying utility function. We learn a personalized preference model using
SVMs, in a similar fashion to Joachims [12], who effectively utilizes an SVM
to learn a ranking function for click-through data, and Chapelle and Keerthi [5]
who present an efficient method to speed up the algorithm. Furthermore, the use
of SVMs facilitates to deal with non-linearity by using the kernel trick. Kernel
methods have been successfully employed for top-N recommendation using, for
instance, Gaussian processes [27] or contextual bandits [25].



In this paper, we benefit from tensor kernels to express the conjugation of
different feature representations (or contexts) by tensor products. Tensor prod-
ucts [7], both as an explicit feature mapping and kernel function, have been
employed for feature selection in classification tasks [3, 4, 24]. Oyama and Man-
ning [18] propose a tensor kernel to conjugate features of example pairs for
learning pairwise classifiers. Tensors are additionally used for relation extraction
in unstructured natural language parsing [32]. The idea of joint feature maps
using tensor product is further utilized in recommendation, where Basilico and
Hofmann [1] present a collaborative-based kernel method over user-item pairs
for rating prediction. Instead, we use hash functions for learning user-specific
models, and empirically show that our approach significantly outperforms their
algorithm yet with a much faster computation.

Hashing functions are introduced by Shi et al. [22] for sparse projections in
multi-class classification tasks, and are originally known as Count Sketch [6].
Weinberger et al. [31] propose a hashing trick for large-scale multi-task learn-
ing, where all tasks are mapped into a joint hash space. Together with tensor
products, Pham and Pagh [19] apply hashing as a random feature mapping
to approximate polynomial kernels in large-scale problems with bounded error.
They exhibit the tensor product feature space as an equivalent to polynomial
kernels and propose an efficient way to project the data into a lower dimension
without explicitly computing the tensor products. Subsequently, Wang et al. [30]
exploit randomized tensors to efficiently perform implicit tensor decomposition
for latent topic modeling.

Our learned model is used in an MCTS framework to sample near-optimal
products for online recommendation. MCTS is an anytime tree search algorithm
for sequential decision making [14, 2] which became very popular due to the
great success in the game playing domains such as Go [23]. MCTS has been also
employed in recommendation problems. Liebman et al. [17] propose MCTS for
playlist recommendation and develops alternative backup strategies to increase
convergence speed. Moreover, Gaudel and Sebag [9] deploy MCTS in feature
selection for recommendation tasks.

3 Informed Sampling from Personalized Preferences

3.1 Preliminaries

We study transaction scenarios in which users, represented by their user ID
u ∈ U, click on a product p ∈ P. The context of the click (e.g., the sequence
of previous clicks, the day and time, etc.) is captured by s ∈ S. We aim to
understand why user u in context s clicks on item p and not on some other
presented item p′ and to turn this understanding into a recommender system
that shows interesting new items to users depending on their context.

Before we exploit user preferences, note that there is often more information
available than the triplet of user ID, item, and context. Some scenarios may
provide additional data sources such as user profile data A, shipping and billing



addresses B, additional information on items I, user friendship graphs F, or
further demographics D. Without loss of generality, we thus assume the existence
of m different data sources, X = {X1, . . . ,Xm} where every source adds some
pieces of information to the problem. We first consider the generalized problem
of merging the m sources into a personalized joint representation before we
incorporate preferences and learn a utility function that can be used together
with Monte-Carlo tree search-based approaches.

3.2 Transaction Kernels

Tensor Kernels. In order to completely capture the interlace properties of data
sources, {X1, . . . ,Xm}, we define the mapping ψt as the tensor product of their
respective vector spaces. The tensor product of two vector spaces V and V ′ is
again a vector space V ⊗V ′ [7]. Let v = {v1, v2, . . . , vk} and v′ = {v′1, v′2, . . . , v′d}
be the basis systems of V and V ′, respectively. Their tensor product space is
spanned by a basis that contains all pairs (vi, v

′
j). For instance, if v = {v1, v2, v3}

and v′ = {v′1, v′2}, the tensor product v⊗v′ is {v1v′1, v1v′2, v2v′1, v2v′2, v3v′1, v3v′2}.
Applying this to our setting results in a mapping ψt on x ∈ X which is given by

ψt(x) = ψt(x1, . . . ,xm) = x1 ⊗ . . .⊗ xm. (1)

Let n1, . . . , nm be the dimensions of the feature spaces, ∀x, z ∈ X we derive
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Thus, the tensor kernel kt is obtained by multiplying the corresponding inner
products between the spaces

kt(x, z) =

m∏
r=1

〈xr, zr〉. (2)

The tensor product features are equivalent to the product of kernels for all
domains in case of linear kernel [24]. Note that the proposed kernel possesses an
explicit representation given in Equation (1) that may be useful in large-scale
tasks with small dimensionalities.

Personalized Kernels. As we mentioned in Section 3.1, we consider the user
IDs a source of information. However, tensor products of such terms with other
views act as normal inner products that do not affect the learning process in a
meaningful way. We thus propose a hashed feature mapping ψp on top of the



Table 1. Exemplary feature mappings

Collective Personalized Personalized+Collective

red::white red::white

red::women red::women

red::shoes red::shoes

... ...
Adidas::sneakers Adidas::sneakers

Adidas::Nike Adidas::Nike

u-742::red::white u-742::red::white

u-742::red::women u-742::red::women

u-742::red::shoes u-742::red::shoes

... ...
u-742::Adidas::sneakers u-742::Adidas::sneakers

u-742::Adidas::Nike u-742::Adidas::Nike

tensor product ψt to remedy this limitation. Given two hash functions g : N→
{1, . . . , d} and γ : N→ {−1,+1} the hashed feature map ψp is defined as

ψp
i (x) =

∑
j:g(j)=i

γ(j)xj see [31], (3)

where d is the hash size and the binary hash γ is used to remove the bias inherent
in the hash kernel. Consequently, the obtained hashing function gives rise to the
personalized kernel kp

kp(x, z) := 〈ψp(ψt(x)), ψp(ψt(z))〉. (4)

The presence of a user ID automatically leads to a user-specific representation
without the need to maintain an individual model for every user. Hence, the
personalized kernel individually hashes all data sources into user slices and allows
to control the dimensionality of the resulting feature space via the number of
bits in the hash function. Moreover, the length of the hashed vector is preserved
with high probability in the new space [31].

Collective Kernels. A substantial problem of personalized systems is to cope
with cold start situations. Usually, many users in the system have no or too few
transactions, which leads to inaccurate personalized models. Borrowing ideas
from Tavakol and Brefeld [25] and Weinberger et al. [31], we propose an addi-
tional collective kernel that stores all user data in a single slice to account for
users and contexts with limited data. Therefore, the collective kernel function
kc simply discards the user IDs from the tensor products and is thus given by

kc(x, z) := 〈ψp(ψt(x \ u)), ψp(ψt(z \ u))〉. (5)



Combining Personalized and Collective Kernels. We propose to combine
the personalized and the collective kernels into a single kernel function to have
the best of the two worlds. Every user has their own individual model with
all data created by that user and whenever that information is insufficient, the
collective part of the kernel may help out. Given the union operation ∪, the
combined feature map ψpc is given by

ψpc(x) = ψp
(
ψt(x) ∪ ψt(x \ u)

)
, (6)

and leads to the personalized and collective kernel kpc,

kpc(x, z) := 〈ψpc(x), ψpc(z)〉. (7)

As a result, three models are considered: a collective model, a personalized
model, and a personalized+collective model. Note that the former learns the
same parameters for all the users. To shed light on the characteristic traits of
the proposed kernels, we showcase their feature spaces on the example of a
user u-742 with context s = red, women, shoes, sneakers, Adidas currently
viewing an item p = white, women, shoes, sneakers, Nike. Table 1 shows the
resulting features for the collective, personalized, and personalized+collective
feature maps where the tensor product is represented as the concatenation of
the corresponding features. Note that we ignore the hash functions for a moment,
which would map the resulting strings to numbers.

Preference-based Transaction Kernels. Finally, to leverage pairwise prefer-
ence data for the recommendation scenarios, we consider user preferences of the
form {pi � p′

i | ui, si}ni=1, indicating that user ui prefers item pi over p′
i in con-

text si. Every preference is translated into xi = (pi, ui, si) and x′
i = (p′

i, ui, si).
Note that additionally available data sources are simply appended in the repre-
sentation. Using a linear model with parameters θ, we require that θ>ψpc(xi) ≥
θ>ψpc(x′

i). Due to linearity, we have

θ> (ψpc(xi)− ψpc(x′
i)) ≥ 0. (8)

After certain transformations, the representer theorem [21] allows to rewrite the
primal parameters as

θ =
∑
j

αj

(
ψpc(xj)− ψpc(x′

j)
)

for dual variables αj . Plugging this result back into Equation (8) shows that all
data-driven parts are of the form〈

ψpc(xi)− ψpc(x′
i), ψ

pc(xj)− ψpc(x′
j)
〉
.

Expanding the term gives

〈ψpc(xi), ψ
pc(xj)〉 − 〈ψpc(xi), ψ

pc(x′
j)〉 − 〈ψpc(x′

i), ψ
pc(xj)〉+ 〈ψpc(x′

i), ψ
pc(x′

j)〉,



Fig. 1. The structure of search tree used by MCTS with five categorical layers.

and using Equation (7) leads to the desired preference-based transaction kernel
that is given by

k(xi � x′
i,xj � x′

j) = kpc(xi,xj)− kpc(xi,x
′
j)− kpc(x′

i,xj) + kpc(x′
i,x

′
j).

Note that in the experiments, we also evaluate the other proposed kernels, kp

and kc, as well. The kernel can be plugged into a binary support vector machine
or any other kernel machine. In case of the former, every preference encodes a
positive example which renders the problem a binary ranking task. Note that
thresholds cancel out in Equation (8); hence, the optimal hyperplane has to pass
through the origin.

4 Informed Sampling Strategies

To recommend an item to a user u in a given context s, we need to maximize the
utility over all products pi ∈ P. In many tasks with only a small set of items and a
fast utility function, a complete enumeration, i.e. an evaluation of every possible
product, may be feasible to find the best-rated item within O(|P|). However, in
real applications, the size of item set is very large, and an efficient technique is
required for online recommendation. We present a variant of MCTS for reducing
the search space and efficiently finding the (near-) optimal candidates.

Thus, we aim to minimize the computational costs for evaluating the utilities
of the items while still obtaining a reasonable approximation of the optimum.
One way to minimize the costs is to limit the number of examples under con-
sideration which implies a trade-off between the utility value of the returned
optimal product and the number of items considered, i.e., we strive for finding
near-optimal products within a bounded number of items. For this purpose, we
incrementally build up a search tree.

Structure of the Search Tree. Every product is characterized by a set of
five categorical features: color, gender, category, sub-category, and brand.
Figure 1 illustrates the search tree for this task which is constructed in a way that



each layer of the tree corresponds to one categorical feature. The actions/arcs
between two layers correspond to values of this feature, e.g., setting the color
of a product to blue. Therefore, a trajectory starting from the root node first
chooses a value for feature 1, followed by a value for feature 2 and so on. At
the leaf nodes of the tree, all five features have been assigned that leads to a
complete item description, and can be used with the current user and context
to query its utility value. We ensure that each leaf node corresponds to a real
product. As an example, choosing action shoes in depth 3 sets the third feature
of the product to shoes, making shirts an illegal action at depth 4.

Monte-Carlo Tree Search. MCTS is an online search algorithm to explore
the state space and find the optimal states for a given utility function. The key
idea is to incrementally construct an asymmetric partial search tree, guided by
the estimates for the encountered actions [14]. The tree is expanded deeper in
branches with most promising actions, so that less time is spent on evaluating
less promising ones. In our setting, the nodes correspond to product features and
the leaves are the products to recommend. Thus, products with more promising
features will be more likely to be sampled than products with uninteresting
features. MCTS is an anytime algorithm, i.e., the algorithm can be stopped at
any time and will provide the best result encountered up to that point.

The algorithm consists of four consequtive steps, which are iterated for each
new example [2]. The selection step follows a path through the tree until a leaf
is reached. The expand step adds a child of this node to the partial tree. Unless
this leaf is already a terminal state in the search space (in our case a product
with all features), Monte-Carlo sampling is used to sample a random terminal
state below the current leaf (the rollout step). The value of this terminal state,
in our case the utility value of the sampled product, is then propagated back
through all nodes up to the root node (the backpropagation step). These backed
up values in the nodes are further used in the next selection step.

Upper Confidence Bounds on Trees. In the selection step, the next node to
expand can be selected in many different ways. We use Upper Confidence Tree
(UCT) [14], which treats each node as a bandit problem. More precisely, in each
node, it selects the action that maximizes the term

i = arg max
j

(
v̄j + 2 · λ

√
2 lnn

nj

)
, (9)

where v̄j is the average value propagated through the j-th node, nj is the number
of times a value has been propagated through this node, while n is the number of
times a value has been propagated through its parent node. parameter λ trades
off two terms in this formula, which correspond to exploitation (focusing on the
best parts of the tree) and exploration (focusing on unexplored parts of the tree).



200 400 600 800 1000
Number of most-Active Users

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Transaction Kernel
Personalized Kernel
Collective Kernel
JRank
Product Only
Vectorized

(a)

<20 <40 <60 <80 <100 <120 <140 <160 <180 <200
Number of Clicks

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Personalized Kernel
Transaction Kernel
JRank

0

20

40

60

80

100

ra
tio

(%
)

Percentage of Users

(b)

Fig. 2. AUC values for (a) SVMs with different kernels vs. baseline, (b) various click
distribution of users.

Algorithmic Modifications. Once a leaf node with high value is found and
added to the partial search tree, it is very likely that MCTS will visit that node
again to get a better estimation. For most applications of MCTS, this is a desired
behavior. However, in our setting, a recently evaluated item does not necessarily
need to be re-evaluated, since its value remains the same (deterministic setting).
Hence, we remove actions/arcs from the search tree if all products reachable
from this edge have already been evaluated in a previous iteration. In this way,
we ensure that products are sampled at most once, but the search nevertheless
focuses on products which match the important properties in the higher levels
of the tree. To select the best product, we do not consider the most frequently
visited actions, as the base MCTS algorithm would do, but keep track of the top
encountered items with respect to the utility value. Although we only consider
recommendations for the best product in this paper, the framework can be easily
extended to do top-k recommendations.

5 Empirical Study

We conduct our experiments on a real-world dataset from Zalando, a large Eu-
ropean online fashion retailer. The data contains pairwise preferences of ∼680k
users on ∼16k items in ∼3.5m total transactions. A transaction occurs when a
user prefers an item over another item, any other click data is ignored. Addi-
tionally, every item is characterized by a set of five categorical features: color,
gender, category, sub-category, and brand. The evaluation of our proposed
approach is twofold, firstly we study the performance of the personalized user
preferences, and secondly, the efficiency of finding optimal items from the feature-
based search tree is explored.

5.1 Performance of Preference Model

The pairwise preference model is obtained by training a support vector machine
with the proposed transaction kernel. To assess the quality of the latter, we run
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the SVM with different feature representations, i.e., kernels, and compare their
performance. The preferences are further converted to both positive and negative
examples to have a balanced dataset. Additionally, the features are represented
as the unmodified string attributes of products for the hash function as shown
in Table 1 with a hash size of 217. SVM trade-off parameters are optimized by
model selection techniques.

The simplest feature representation in our experiment uses the five attributes
of the products and discards user or context features. That is, ψ(p, u, s) = p,
where the features are one-hot encoded. We refer to this representation as “prod-
uct only”. A second baseline concatenates all available features into a single
vector. Since the user ID is hardly an informative quantity, we replace it by
clicking frequencies of item categories to form a feature vector for users. The fre-
quencies are computed on historic data, and the final representation is given by
ψ(p, u, s) = [p; freqcat(u); s]. We refer to this representation as “vectorized”. We
include the collective kernel and the personalized kernel as special cases of the
transaction kernel in our experiments. We also compare the performances with
JRank [1], as another kernel-based recommendation approach which is based
on collaborative filtering view to predicts ordinal ratings; this corresponds to
learning a binary ranking in our scenario.

Figure 2 (a) shows AUC values obtained by a 10-fold cross-validation for the
different models. The users on the x-axis are ordered from left to right according
to their click frequencies. The results clearly demonstrate that the information
encoded in the baselines “product only” and “vectorized” is not sufficient to
accurately learn the preferences. The poor performance of JRank is caused by
the sparsity of the data as well as cold start situations. JRank tries to remedy
cold start issues by incorporating attributes of users and items into the model;
however, compared to including the short-term context as in our model, there is
only little to incorporate for JRank. Furthermore, the correlation kernel in JRank
depends on collaborative information extracted from the user-item matrix which
is too sparse in the problem to capture accurate correlations between users and
items. The collective kernel alone also does not perform well. The reason for this



lies in the choice of the users. Since all users expressed many preferences, they
left enough data for the personalized kernel to capture their characteristic traits.
However, at about rank 200, the performance of the transaction kernel increases
over the personalized kernel as the collective kernel kicks in. The users with 200
to 1000 clicks clearly benefit, if only slightly, from the inclusion of the collective
model into the transaction kernel.

To illustrate this effect, consider Figure 2 (b) which uses all data. The x-axis
shows the different numbers of clicks of the users together with the distribution.
Simultaneously, the figure shows the AUC of the transaction and the personalized
kernel (y-axis on left side). In terms of AUC, users who have about 120 clicks or
more are better off with a purely personalized model that is only trained on their
data alone. However, the red curve shows that these users are only a vanishing
minority of all users. The distribution of clicks clearly follows an exponential law
where the majority of users have only one or two dozens of clicks. For them, the
transaction kernel leverages the collective kernel so that the majority benefits,
even though they have only little data to share. On the other side of the scale, the
heavy hitters do not loose too much in terms of AUC if the transaction kernel is
used. This renders that the proposed approach provides the best representation
in this study. Note that the two left-most points of the figure involve data at
large scales and the first cross validation fold for JRank took more than ≈30
days. We thus resort to showing only the results of this first fold.

Figure 3 draws a similar picture for context popularity instead of user clicks.
We randomly choose a smaller subset of data for this experiment to evaluate the
baseline in a reasonable amount of time, which leads to an overall higher AUC
in all the approaches. The figure confirms that the more popular the context,
the better the performance of the transaction kernel. In addition, popular con-
texts are rare, and again the majority of users create new and unseen contexts.
However note that the transaction kernel clearly outperforms the personalized
kernel for all contexts. JRank does not rely on any context related information
and is more or less unaffected by context popularity.

We also investigate the effect of the size of the hashing function. Figure 4
shows the results for data from the 200 most active users. The more bits are used,
the larger the resulting hashed space. Smaller numbers of bits lead to collisions
that introduce noise into the representation as the mapping is no longer one-to-
one but one-to-many.

5.2 Performance of Informed Sampling

We compare the performance of our MCTS-based sampling with other search
strategies: Random Subset Exhaustion (RSE) and Greedy Stochastic Search
(GSS) as the baselines. RSE is a simple way to approximate the optimal element
of a countable set without taking any structure into account. Given a fixed limit
on the number of products that can be tested, it takes a random sample of the
given size and exhaustively determines the best discovered item.

GSS explores the search tree in a greedy fashion. We first randomly initialize
a product, and then explore a stochastic neighborhood of this product. This
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Fig. 5. Performance of MCTS (a) w.r.t. different parameters, and (b) compared to
baseline methods.

neighborhood is formed by sampling a fixed number of h products, where half
of them are randomly selected among those that differ only in brand (distance
d = 2 edges in the tree of Figure 1), one quarter of the products differ in
brand and subcategory (d = 4), and, in general, 1/d percent of the products
in the neighborhood are randomly selected among those with distance d. Then,
all products among the h products in this neighborhood are evaluated and the
search continues with the best one among those.

We run the experiments on several user-context pairs, where we randomly
select three existing users and one new user. For the context, we randomly select
50 items which leads to 200 different settings. The results of each context-user
pair and parameter setting are averaged over 50 runs for MCTS and GSS. For
RSE, we show the average over all possible subsets. We first evaluate the per-
formance of the proposed method for various values of λ that we choose from
{0.01, 0.1, 0.2, 0.5, 1}. Figure 5 (a) shows that the value of λ = 0.2 achieves the
best result for different numbers of tested products.

We further evaluate the performance of the MCTS approach compared to the
baselines. Figure 5 (b) shows the average value for the best found product for
different numbers of tested items. The results confirm that informed sampling
via MCTS outperforms RSE for the same number of products for all maximum
sample sizes. The advantage can be observed for all settings of the parameter λ ,
but the magnitude of the advantage varies. The performance of GSS lies between
RSE and MCTS until 10, 000 products, and then starts to slightly outperform
MCTS with an average value of over 99.5%. The parameter value of λ = 0.2
performs the best over all numbers of items considered. It is not surprising
that this value favors exploitation, since our algorithmic modifications of MCTS
already enforces some exploration.

In Figure 6, we show a more detailed analysis for a single product (hand-
picked as a representative case). The values of the best found item are shown
for different users and different parameter settings. For all selected users, MCTS
with λ = 0.2 finds a better product within 2, 000 products than RSE does within



Fig. 6. Given one product and four users (user 4 is a new user), different MCTS
parameters, GSS and RSE are tested.

10, 000 products. There are extreme cases like for User 4, a new user without
training data, where MCTS is able to find the best-rated item very quickly. For
User 2, a bad choice for MCTS, the parameter λ shows a worse performance
than RSE, but this is a rare case. In summary, MCTS is able to find near-
optimal products using a considerably lower number of samples than GSS or
RSE. However, this reduction in the number of tested products comes with
higher computational costs. Therefore, the choice of sampling strategy depends
on the problem at hand.

6 Conclusion

In this paper, we presented an effective and efficient preference-based learning
approach to model personalized interests of users in contextual settings. We de-
vised transaction kernels from pairwise preference data that combine theories
from tensor products with hashing functions to capture individual as well as col-
lective user preferences. The kernel functions were used in training a preference
model via support vector machines to predict the utility of various products for
a given user and context. Subsequently, we proposed a variant of Monte Carlo
tree search method for efficiently retrieving near-optimal items for online rec-
ommendation purposes. Empirically, on a real-world transaction dataset, both
the preference models as well as the search tree exhibited excellent performance
over baseline approaches, in particular in cases where only a small number of
products could be sampled.
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Hüllermeier [8], pp. 45–64

29. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific
articles. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 448–456. ACM (2011)

30. Wang, Y., Tung, H.Y., Smola, A.J., Anandkumar, A.: Fast and guaranteed ten-
sor decomposition via sketching. In: Advances in Neural Information Processing
Systems. pp. 991–999 (2015)

31. Weinberger, K., Dasgupta, A., Langford, J., Smola, A., Attenberg, J.: Feature
hashing for large scale multitask learning. In: Proceedings of the 26th International
Conference on Machine Learning (ICML-09). pp. 1113–1120. ACM (2009)

32. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.
Journal of Machine Learning Research 3(Feb), 1083–1106 (2003)


