
An Actor-Critic Ensemble Aggregation Model for
Time-Series Forecasting*

Amal Saadallah
Artificial intelligence Group

TU Dortmund
Germany

amal.saadallah@cs.tu-dortmund.de

Maryam Tavakol
Artificial intelligence Group

TU Dortmund
Germany

maryam.tavakol@cs.tu-dortmund.de

Katharina Morik
Artificial intelligence Group

TU Dortmund
Germany

katharina.morik@tu-dortmund.de

Abstract—Ensemble models are widely used as an effective
technique in time-series forecasting, and recently, are inclined
toward leveraging meta-learning methods due to their proven
predictive advantages in combining individual models in an
ensemble. However, finding the optimal strategy for ensemble
aggregation is an open research question, particularly, when the
ensemble needs to be adapted in real-time. In this paper, we pro-
pose a novel meta-learning approach for aggregation of linearly
weighted ensembles for the task of time-series forecasting. We
outline a deep reinforcement learning framework with a coherent
design of the components of the environment and the objective
function as an aggregation method in our task. In this framework,
the combination policy in ensembles is modeled as a sequential
decision making process which is able to capture the temporal
behavior in time-series, and an actor-critic model aims at learning
the optimal weights in a continuous action space. An extensive
empirical study on various real-world datasets demonstrates that
our method achieves excellent or on par results in comparison
to the state-of-the-art approaches as well as several baselines.

Index Terms—Ensemble learning , weighting , meta- learning
, actor-critic networks , time-series forecasting.

I. INTRODUCTION

An ensemble model is defined as a collection of several
models that addresses the same learning task as the individual
models to improve the overall performance [1]. The learning
procedure of an ensemble consists of three main steps. First,
a set of h possible hypotheses generate h base models, such
that each model is able to individually provide an accurate
approximation of an unknown function f . The second step
carries out model pruning to keep only a subset m < h of
the hypotheses. The last step, which is the main focus of this
paper, consists of combining these hypotheses together into
one single model. Note that we use the term combination and
aggregation interchangeably throughout the paper.

Over the past decades, several approaches have been
developed for ensemble learning in general [2], [3], and for
ensembles on time-series forecasting in particular [1], [4]–[6].
Many of these methods focus on optimizing one specific step
in ensemble learning, amongst them, model combination is of
the highest interest [1], [4], [5]. Combination strategies in an

* This work is supported by the Deutsche Forschungsgemeinschaft (DFG)
within the Collaborative Research Center SFB 876 and the Federal Ministry
of Education and Research of Germany as part of the competence center for
machine learning ML2R (01—S18038AB).

Environment

Actor

Critic

Value

R
ew

ra
d

St
at
e:

 W
ei

gh
te

d
En

se
m

bl
e

O
ut

pu
t o

n
W

A
ct
io
n:

 T
he

 e
ns

em
bl

e
w

ei
gh

ts
 w

i,
i =

 {1
,..

.,
m

}

Fig. 1: Components of EA-DRL approach

ensemble can be categorized into three main families: voting
schemes which employ either the majority or (weighted)
average of the votes (e.g., bagging [3]), cascading paradigm
where the outputs of the base models are iteratively added to
the training set one at a time, and stacking approaches [7] in
which the combination of actual outputs is often learned from
previous experiences by a meta-learning strategy. The latter
learns a combination rule by incorporating a set of meta-
features and/or performance-based landmarking features [1].
Hence, learning the optimal combination strategy in a linearly
weighted ensemble, remains an open research question [8].

In this paper, we propose a novel meta-learning technique
for dynamic ensemble aggregation in the problem of time-
series forecasting. In addition to the fact that time-series
data-points are inherently time ordered, they may encompass
occasional concept drifts, and the combination strategy of
an ensemble requires to dynamically adapt to their changes.
Therefore, we take a sequential approach based on Rein-
forcement Learning (RL) that is able to capture the temporal
changes that occur in the data and provides the optimal
combination strategy of the ensemble in real-time scenarios.
Although reinforcement learning has successfully performed
in many complex tasks [9], it has been insufficiently explored
in the domain of time-series analysis as well as ensemble
learning. To the best of our knowledge, we are the first to
exploit reinforcement learning to learn the optimal combina-
tion strategy of ensembles in time-series forecasting tasks.

In our approach, we first create a set of heterogeneous base
models that are trained in parallel and separately from each
other to maximize diversity. Second, we learn a combination

policy (optimal weights of the base models) using a meta-
learning approach in a continuous space of weights that would
lead to the most accurate ensemble construction given a finite
window of previous time-series values. Our framework is
addressed by EA-DRL: Ensemble Aggregation using Deep
Reinforcement Learning, throughout the paper, and the overall
procedure of EA-DRL is illustrated in Figure 1. In this
work, we leverage an actor-critic architecture in deep learning
settings to learn the combination policy of linearly weighted
ensembles. We employ the approach presented in [10] to learn
a policy in the continuous action space, in which the actions
are determined to be the set of weights of the ensemble. We
further conduct comprehensive empirical analysis to validate
our framework using 20 real-world time-series datasets. The
obtained results show that our method outperforms standard
state-of-the-art methods for ensemble learning such as sliding-
window averaged ensemble [4], stacking [7], and bagging [3],
and performs better or on par with adaptive approaches for
dynamic ensemble selection [6].

II. ENSEMBLE AGGREGATION MODEL

This section presents EA-DRL, an approach based on
Reinforcement Learning (RL) for ensemble aggregation in
time-series forecasting. In this approach, first a pool of base
models is constructed to perform the forecasting task, which
is further used to learn an optimal aggregation policy in an RL
framework. Note that the learning of both the base models and
the optimal policy are performed offline, and we show how to
leverage the obtained policy in online scenarios for forecasting
future values of time-series.

A. The Ensemble Problem Setting

A univariate time-series Xt is a temporal sequence of values
up to time t, Xt = {x1, x2, . . . , xt}, where xi represents the
value of X at time i. Let M = {f1, f2, . . . , fm} be a pool of m
base models trained to approximate a true unknown function
f that generated Xt. An ensemble model f of M at a future
data-point t+j (j ≥ 1) can be formally expressed as a convex
combination of predictions of the individual base models in
M

f(xt+j) =

m∑
i=1

wt+j
i fi(xt+j), (1)

where wt+j
i , i ∈ {1, . . . ,m}, determine the weights of the

ensemble for the time t+j. For notational simplicity, assume in
the following that our objective is to predict xt+1 (i.e., j = 1)
without loss of generality. We thus aim to find a set of weights
for the ensemble that minimizes the expected prediction error
for the next forecast

argmin
wt+1

i ,∀i
E
[(
f(xt+1)− f(xt+1)

)2 |Xt

]
,

s.t. wt+1
i ≥ 0,∀i ∈ {1, · · · ,m},

m∑
i=1

wt+1
i = 1

(2)

The above objective function indicates that the weights are
time-related, since they require to be adapted at every time-
step in order to comply with the temporal properties of the un-
derlying process. More specifically, time-series are inherently
time ordered, and the forecasting task depends on a sequential
analysis that is able to capture the temporal changes that occur
in the data. Therefore, we take a sequential approach based
on RL to learn an optimal policy function that automatically
provides the optimal set of weights in real-time scenarios given
the situations at different time-steps.

B. The MDP Framework

An RL problem is mathematically formulated via a Markov
Decision Process (MDP) [22]. An MDP is defined by a
five tuple (S,A,R,P, γ), in which S are the states, A the
actions, R : S → R is the reward function, P : S × A → S
is the transition function, and γ ∈ [0, 1) is the discount factor.
The goal of an MDP is to learn a policy π : S → A that
maximizes the total obtained reward, and decides about what
actions to take at every state. In this section, we characterize
our meta-learning task for finding the optimal weights of
ensembles for time-series forecasting in an MDP framework.

Actions. An action is interpreted as a decision made at
time t to be executed at t + 1. In our setting, a decision
at every time-step is to determine the set of weights for
the ensemble that optimizes the objective in Equation 2.
Therefore, the action at ∈ A is defined as an m-dimensional
vector, at = (at,1, at,2, . . . , at,m)>, taken at time t that
corresponds to the vector of ensemble weights wt+1 =
(wt+1

1 , wt+1
2 , . . . , wt+1

m)>. These weights are attributed to
each of the m single models in the ensemble to predict the
future value of xt+1. This definition of actions leads to a
continuous m-dimensional action space.

States. Since we are dealing with time-evolving data where
the performance of the base models and the ensemble rely on
that, the state st ∈ S is set to reflect both the dynamics of
the time-series and the effect of performed actions until time
t. Let ω be a provided window size of a validation set Xω

that corresponds to the previous ω values of the time-series
until time t, Xω = {xt−ω+1, xt−ω+2, . . . , xt}. We consider
state st to be the current window of time-series that is used
for forecasting the next value, i.e., xt+1. However, the next
state st+1 ∈ S should be devised in a way that it reflects the
result of a taken action at at state st. Therefore, we take the
output of the ensemble f on Xω as a state, instead of Xω

itself, since it reflects the result of the internal combination
policy (i.e., at), and also, captures the characteristic traits of
Xω . That means, st = {x̂t−ω+1, x̂t−ω+2, . . . , x̂t}, where x̂i
is the output of ensemble at time t given by Equation (1) and
using the weight vector at, x̂i = f̄(xi).

Transition function. The transition function is determin-
istic in our problem as selecting an action only leads to
one possible next state: P(st+1|st,at) = 1 when st+1 =
{x̂t−ω+2, x̂t−ω+3, . . . , x̂t+1} and is zero otherwise.

Reward function. We further determine the reward of
taking an action at in state st as a function R(st,at), which

for brevity in notation we denote by rt. In our framework,
we benefit from an ensemble accuracy-related measure since
we are searching for a combination strategy that would result
in the most accurate ensemble model. One alternative is to
use a direct estimation of the ensemble performance using,
for instance, an inverse measure to the ensemble forecasting
error. Nevertheless, the magnitude of this error does not only
depend on its performance or on the performance of the single
models, but also relates to the time-varying structure of the
time-series itself. This can result in slower convergence rate
of the RL algorithm. Therefore, to stabilize the reward, we opt
for a rank-based definition instead.

Assume that the set of m models in M together with the
ensemble model form a total of m+ 1 models. Subsequently,
we compile a ranked list of all the models (including the en-
semble) using their corresponding forecasting error, in which,
ρfi indicates the rank of model fi. The lower the rank is in
the obtained ranking, the more accurate the model is (i.e., rank
1 means the model performs the best). The reward rt is thus
defined by

rt = m+ 1− ρf , (3)

where ρf is the rank of the ensemble among all the models,
and the lower it is, the more accurate the ensemble is and the
higher the reward value will be. An empirical evaluation of
the importance of the choice of the reward is illustrated in the
experiment section.

C. Learning the Combination Policy

Once the meta-learning task is phrased in an MDP frame-
work, the policy π is learned in favor of maximizing the
reward which correlates to an inverse measure of the ensemble
performance. Consequently, the objective function presented
in Equation 2 is turned into learning the optimal policy of
the MDP via an RL algorithm. We employ the deep actor-
critic approach presented in [10] to learn an optimal com-
bination policy in a continuous action space. This approach
is selected since it is well-suited for both continuous and
high-dimensional action and state spaces (for large m and
ω). In this architecture, the actor is accountable for selecting
an action given the current state, and the critic estimates a
value function which provides adequate evaluation for the
actor. Both parts are represented by (deep) neural networks
that can be optimized by gradient descent-based methods.
As a result, the actor and the critic networks are called the
policy network and the value network, respectively. The value
network predicts the value of an action at in state st via
Q(st,at|φ), where φ is the parameter vector of the value
network; see [10]: Eq. (3)-(5). On the other hand, the policy
network learns a policy π(st|θ) which yields a deterministic
policy in state st given the network parameters θ; see [10]:
Eq. (6). During the learning, the actor takes the gradients
derived from the policy gradient theorem and adjusts the policy
parameters θ, and the critic network estimates the approximate
value function for the current policy π via Bellman equation.

Algorithm 1 Forecasting next Nf values
Require: validation set Xω; policy π(s|θ) ; window size: ω

1: set s to {x̂Et−ω+1, x̂
E
t−ω+2, · · · , x̂Et }

2: predict w using π(s|θ)
3: predict xt+1 using Equation 1
4: for j ∈ {2, · · · , Nf} do
5: update s by removing oldest value and adding xt+j−1
6: predict w using π(s|θ)
7: predict xt+j using Equation 1

D. Improving Convergence

A replay buffer R is initialized to store transitions T k =
(skt ,a

k
t , r

k
t , s

k+1
t), k ∈ {1, · · · , Nmax} with Nmax the maxi-

mum number of stored transitions . At each iteration i within
each episode, N transitions are randomly sampled from R
in [10]. Instead of adopting random sampling, we suggest
to induce a diversity sampling by showing equal number of
transitions with actions resulting in high reward values and
transitions with actions resulting in low reward values. In this
way, both types of actions resulting in high and low rewards
are fed to both critic and actor networks. This is achieved by
sampling :

N/2 transitions with reward rkt ≥ median
k∈{1,··· ,Nmax}

(rkt)

N/2 transitions with reward rkt < median
k∈{1,··· ,Nmax}

(rkt)
(4)

E. Online Forecasting

After the policy network π(s|θ) is learned, we apply the
model for predicting the weights of the ensemble (i.e., actions)
that will be used for predicting the future values of time-series
in an online manner. Let state s be Xω , the predicted weights
via a are used to predict xt+1. Afterwards, the ω-length vector
of time-series Xω (i.e., the state s) is moving forward by
one value. That means, the oldest value is removed and the
predicted value x̂Et+1 is added to the current window. The new
sate s′ and π(s|θ) are employed to predict the weights of the
ensemble to forecast the next value of the time-series. The
procedure is repeated until Nf desired values of the time-
series are forecasted. This stage is summarized in Algorithm
1.

III. EMPIRICAL STUDY

In this section, we present the experiments that evaluate
the performance of EA-DRL for forecasting to answer the
following research questions. Q1: How does EA-DRL perform
compared to the state-of-the-art and existing dynamic ensem-
ble combination approaches for time-series forecasting?; Q2:
How critical the reward function is for the convergence of the
reinforcement learning approach?; Q3: What is the impact of
improving the convergence compared to the learning procedure
proposed in [10]?; Q4: How scalable is EA-DRL in terms
of computational resources compared to the most successful
ensemble approaches for forecasting?

TABLE I: List of Datasets used for the experiments.

dataset-ID Time-series Data source Data characteristics

1 Water consumption Oporto city [5] Daily– Jan. 2012 to Oct. 2016

2 Humidity
3 Windspeed Bike sharing [5] Hourly–Jan. 1, 2011 to Mar. 01, 20114 Total bike rentals

5 Vatnsdalsa River flow [5] Daily–Jan. 1, 1972 to Dec. 31, 1974

6 Total cloud cover Weather data [23] Hourly–Apr. 25, 2016 to Aug. 25, 20167 Precipitation

8 Global horizontal radiation Solar radiation
monitoring [5] Hourly–Feb. 16, 2016 to May 5, 2016

9 Taxi Demand 1 Porto Taxi Data
[4]

Half-hourly (taxi pick-ups)–Jul. 01, 2013
to Jun. 30, 201410 Taxi Demand 2

11 NH4 concentration NH4 in
wastewater [24]

10-minute steps–Nov. 30, 2010 at 16:10 to
Jan. 01, 2011 at 6:40

12 Humidity RH3

13 Humidity RH4

14 Humidity RH5 Appliances Energy
[24]

10-minute steps– Jan. 11, 2016 at 17:00 to
May 27, 2016 at 18:0015 Temperature Tout

16 Wind speed
17 Tdewpoint

18 France CAC European stock
indices [24]

10-minute steps–Jan. 11, 2016 at 17:00 to
May 27, 2016 at 18:0019 Germany DAX (Ibis)

20 Switzerland SMI

Experimental Setup We conduct our experiments on 20
real-world time-series data from 9 different domains, which
are briefly described in Table I. Each dataset is further split into
training and testing sets via a 75%− 25% ratio. We evaluate
various methods in terms of the root mean squared error
(RMSE), and the error is used to create a ranked list of models
according to their performance that serves as the evaluation
metric in our analysis. The results are further assessed using
the Bayesian correlated t-test to compare pairs of models
in a single dataset, and the Bayes sign test to compare
pairs of methods across multiple datasets [25]. Moreover, an
embedding dimension of k = 5 is used for all the time-series.

Single base models set-up Additionally, we construct a
pool M of single base models for the ensemble learning
to incorporate diverse families of models in the ensem-
ble. We mentioned earlier that there is no single method
for forecasting that outperforms all the other methods on
every time-series. Hence, we incorporate and test differ-
ent families of models: ARIMA:Autoregressive Integrated
Moving Average [26], ETS: Exponential Smoothing [27],
GBM:Gradient Boosting Machines [33], GP: Gaussian Pro-
cesses [34], SVR:Support Vector Regression [35],RFR: Ran-
dom Forest [3], PPR:Projection Pursuit Regression [36],
MARS: MARS [37], PCMR: Principal Component Regres-
sion [38], DT:Decision Tree Regression [1], PLS: Partial
Least Squares Regression [38], MLP: Multilayer Percep-
tron [39], LSTM:Long short-term memory network [29], Bi-
LSTM:Bidirectional LSTM [40], CNN-LSTM: CNN-based
LSTM [30] and Conv-LSTM:Convolutional LSTM [32]. Re-
gression models are also included in M and are applied after
using time series embedding to dimension k. Using different
parameter settings for each approach, we generate a pool of
43 single base models that will be used for constructing the
ensemble model.

EA-DRL set-up In EA-DRL setting, both policy and value
networks are based on MLPs, which perform simple regression
and multi-regression (m-dimensional weights), respectively. In
addition, a standard normalization is applied to the output of

the policy network, so that all the weights are positive and sum
to one. The hyperparameters of EA-DRL are tuned by model
selection which result in discount factor γ = 0.9, learning rate
α = 0.01, and max.ep and max.iter of 100.

State-of-the-art Methods We compare the performance of
EA-DRL against several standard baselines as well as state-of-
the-art approaches that are briefly described in the following:
ARIMA [26], LSTM [29], StLSTM [41]: Stacked LSTM
model where multiple hidden LSTM layers are stacked one
on top of another. This model can be viewed as an ensemble
of LSTMs combined using a cascading approach, RF [3]:
random forest, GBM [33]: gradient boosting machine, SE
[42]: A static ensemble model that averages the performance
of all base learners using arithmetic mean, SWE [4]: A linear
combination of predictions of the base models, in which the
weights are based upon recent performance over a time sliding-
window, EWA [16]: An ensemble combination using expo-
nential weighted averages,FS [16]: The fixed share approach
which is designed for tracking the best expert across a time-
series, OGD [16]: An approach based on online gradient de-
scent that provides theoretical loss bound guarantees, MLPOL
[16]: A polynomially weighted average forecast combination,
Stacking [7]: An ensemble approach using random forest as
a meta-learner, Clus [6]: A meta-learner based on dynamic
clustering method to group similar models together, and only
cluster representatives are selected to form the ensemble using
SWE, Top.sel [6]: A dynamic method to select the best
performing base model and combining them using SWE,
DEMSC [6]: A drift-aware combination of Top.sel for ensem-
ble pruning and Clus for diversity enhancement to construct
the SWE-based ensemble model.

A. Evaluation Results

On predictive performance
Table II presents the pairwise comparisons between EA-

DRL and the baseline approaches using the Bayesian corre-
lated t-test. It exhibits number of wins and losses of EA-DRL
compared to the other methods in the table. The numbers in
parenthesis represent significant wins/losses with probability
above 95%. In addition,we evaluate the distribution of ranks
across different time-series for all the methods (the lower
the better). A rank of one means that the model is the best
performing on all datasets. The results show that our approach
achieves the best performance among the evaluated methods.
Furthermore, EA-DRL outperforms the baseline methods in
terms of wins/loses in pairwise comparison, however not
DEMSC and MLPOL. The approaches that are based on
combining individual forecasters, e.g., SE, SWE, etc., and
common ensemble methods, such as RF, GBM, Stacked
LSTM and Stacking, show inferior performance compared to
EA-DRL. ARIMA and LSTM, state-of-the-art methods for
forecasting, have a considerable difference in the average
rank as well. The two competitive approaches to our method
are DEMSC and MLPOL that perform well in the pairwise
comparison, nevertheless, both attain a higher average rank.
DEMSC is based on real-time update of meta-learning strategy

behind, while EA-DRL is devised offline and only predictions
are computed in real time. More details are provided when
discussing the computational efficiency.

TABLE II: Pairwise comparison between EA-DRL and base-
line methods averaged over all 20 datasets (ω = 10).

Method Pairwise comparison
Looses Wins Avg. Rank

ARIMA 8(0) 11(6) 7.74± 4.0
RF 2(2) 17(15) 10.21± 3.0
GBM 0(0) 19(18) 14.11± 2.6
LSTM 4(0) 16(12) 8.42± 4.7
StLSTM 1(0) 19(18) 13.16± 2.4
SE 5(0) 15(14) 7.80± 3.8
SWE 4(2) 16(15) 10.37± 4.35
EWA 5(1) 15(10) 6.24± 2.3
FS 6(4) 14(9) 6.90± 3.0
OGD 5(2) 15(10) 6.28± 2.3
MLPOL 9(1) 11(6) 5.37± 3.7
Stacking 2(0) 18(16) 12.36± 2.5
Clus 4(0) 16(15) 12.05± 5.0
Top.sel 4(2) 16(11) 7.68± 4.2
DEMSC 11(0) 9(3) 4.53± 3.7
EA-DRL - - 2.89± 1.9

Reward Setting In the next experiment, we study the
convergence of deep actor-critic algorithm in [10] using two
different settings for the reward function. Figure 2a shows the
results for the reward defined as 1−NRMSE, where NRMSE
is the normalized RMSE of the computed ensemble using the
corresponding action (i.e., weights) on Xω , while Figure 2b
uses the reward as defined in Equation 3. The same setup of
EA-DRL is applied for the second approach using the NRMSE
as reward. As it is mentioned in Section II-B, Algorithm 1
in [10] does not converge using the first definition of the
reward, since the magnitude of forecasting errors do not only
depend on the models but is also changing with time. Thus,
the choice of the reward is critical for the convergence of
the reinforcement learning strategy. This answers the research
question Q2.

0 200 400 600 800 1000

0
.2

0
.8

(a) Reward computed using 1−NRMSE

0 200 400 600 800 1000

15
25

(b) Reward computed using Eq. 3

Fig. 2: Learning curves of Alg.1 [10] with two different reward
definitions. In the x-axis, the number of episodes. In the y-axis,
the average reward over each episode.

On improving the convergence we compare the runtime
of EA-DRL using transitions sampling procedure as explained
in Section II-D to the training procedure based on random
sampling of transitions [10]. Our sampling reduces the number

TABLE III: Empirical runtime comparison between EA-
DRLand DEMSC.

Method Avg. Runtime in sec.
EA-DRL 37.93± 10.83
DEMSC 67.97± 27.4

of required episodes for convergence to 100 episode while
more than 250 episodes were required using random sampling
of transitions. In average, the execution time for learning the
policy using ou sampling procedure in the offline phase is
around 300 min while in the latter one is around 735 min,
highlighting thus the usefulness of improving the convergence
in optimizing computational resources even for the offline
learning phase. This answers the research question Q3.

Execution time Last but not least, we compare the run-
time of EA-DRL against the most competitive state-of-the-art
method, i.e., DEMSC, where the results are summarized in
Table III. Note that the policy network is trained offline and the
reported runtime is calculated for computing the time-series
predictions in real-time using Algorithm 1. DEMSC relies on
informed update (i.e., following a drift detection mechanism)
of the strategy for model combination. The reported runtime
for DEMSC concerns also only the online predictions com-
putation and any operation computed offline is not taken into
account to ensure a fair comparison. The results demonstrate
that EA-DRL has a lower average time. Consequently, in
addition to the performance results, EA-DRL performs better
in terms of runtime, even though it does not update the policy
in real-time, compared to the most competitive method. This
answers the research question Q4.

B. Discussion and Future Work

The empirical results indicate that EA-DRL has perfor-
mance advantages compared to other ensemble methods
and is competitive with the most recent state-of-the-art ap-
proaches for dynamically combining forecasting methods.
However, compared to DESMC, which needs to select the
top-performing base models, cluster them, compute clusters
representatives to take part in a weighted ensemble, and update
the whole process online once a drift in the dependencies
between single models is detected, our method is computa-
tionally cheaper and the policy is learned offline and only
deployed online. One potential future research direction would
be to investigate the impact of an online update of the policy,
for instance in a periodic manner, or in an informed fashion
following a drift-detection mechanism in the data and/or the
performance of the ensemble. We can additionally incorporate
a pruning step into our framework, so that only relevant models
take part in the weighting/combination stage. Furthermore,
ensemble diversity is known to be one of the most important
aspects for successful ensemble construction. Such aspect can
be further examined in our framework by adding a diversity-
related measure in the formulation of the reward. Moreover,
this paper is focused on forecasting problems. Notwithstand-
ing, our intuition is that the central idea behind EA-DRL can
be generalized to other i.i.d. domains, e.g., standard regression

and classification tasks. We will also explore these extensions
in the future work.

IV. CONCLUSIONS

In this paper, we introduced EA-DRL: a novel and prac-
tically effective ensemble aggregation framework for time-
series forecasting that employs a deep reinforcement learning
approach as a meta-learning technique. We exploited an actor-
critic algorithm, in which the actor is trained to gain experience
on how to select the best set of weights given a previous
combination of models in the ensemble. Once the optimal
policy is learned offline, the ensemble weights are predicted in
real-time using the policy network and ensemble predictions
are then computed. An extensive empirical evaluation of
EA-DRL on twenty real-world datasets demonstrated superb
results compared to multiple baseline algorithms, and achieved
competitive performance with the state-of-the-art.

REFERENCES

[1] J. Khiari, L. Moreira-Matias, A. Shaker, B. Ženko, and S. Džeroski,
“Metabags: Bagged meta-decision trees for regression,” in Joint Eu-
ropean Conference on Machine Learning & Knowledge Discovery in
Databases. Springer, 2018, pp. 637–652.

[2] T. G. Dietterich et al., “Ensemble learning,” The handbook of brain
theory and neural networks, vol. 2, pp. 110–125, 2002.

[3] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[4] A. Saadallah, L. Moreira-Matias, R. Sousa, J. Khiari, E. Jenelius, and
J. Gama, “Bright-drift-aware demand predictions for taxi networks,”
IEEE Transactions on Knowledge and Data Engineering, 2018.

[5] V. Cerqueira, L. Torgo, F. Pinto, and C. Soares, “Arbitrated ensemble
for time series forecasting,” in Joint European conference on machine
learning and knowledge discovery in databases. Springer, 2017, pp.
478–494.

[6] A. Saadallah, F. Priebe, and K. Morik, “A drift-based dynamic ensemble
members selection using clustering for time series forecasting,” in Joint
European conference on machine learning and knowledge discovery in
databases. Springer, 2019.

[7] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2,
pp. 241–259, 1992.

[8] V. Cerqueira, F. Pinto, L. Torgo, C. Soares, and N. Moniz, “Constructive
aggregation and its application to forecasting with dynamic ensembles,”
in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2018, pp. 620–636.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv preprint arXiv:1509.02971, 2015.

[11] J. G. D. Gooijer and R. J. Hyndman, “25 years of time series forecast-
ing,” International Journal of Forecasting, vol. 22, no. 3, pp. 443–473,
2006, twenty five years of forecasting.

[12] N. Cesa-Bianchi and G. Lugosi, Prediction, learning, and games.
Cambridge university press, 2006.

[13] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the 20th international conference
on machine learning (icml-03), 2003, pp. 928–936.

[14] P. Gaillard and Y. Goude, “Forecasting electricity consumption by
aggregating experts; how to design a good set of experts,” in Modeling
and stochastic learning for forecasting in high dimensions. Springer,
2015, pp. 95–115.

[15] L. Todorovski and S. Džeroski, “Combining classifiers with meta
decision trees,” Machine learning, vol. 50, no. 3, pp. 223–249, 2003.

[16] P. Gaillard and Y. Goude, opera: Online Prediction by Expert
Aggregation, 2016, r package version 1.0. [Online]. Available:
https://CRAN.R-project.org/package=opera

[17] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 1126–1135.

[18] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple
neural attentive meta-learner,” in International Conference on Learning
Representations, 2018.

[19] I. Partalas, G. Tsoumakas, I. Katakis, and I. Vlahavas, “Ensemble prun-
ing using reinforcement learning,” in Hellenic Conference on Artificial
Intelligence. Springer, 2006, pp. 301–310.

[20] I. Partalas, G. Tsoumakas, and I. Vlahavas, “Pruning an ensemble of
classifiers via reinforcement learning,” Neurocomputing, vol. 72, no. 7-
9, pp. 1900–1909, 2009.

[21] C. Feng and J. Zhang, “Reinforcement learning based dynamic model
selection for short-term load forecasting,” in 2019 IEEE Power & Energy
Society Innovative Smart Grid Technologies Conference (ISGT). IEEE,
2019, pp. 1–5.

[22] R. S. Sutton and A. G. Barto, “Reinforcement learning,” 1998.
[23] T. Stoffel and A. Andreas, “Nrel solar radiation research laboratory

(srrl): Baseline measurement system (bms); golden, colorado (data),”
7 1981.

[24] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[25] A. Benavoli, G. Corani, J. Demšar, and M. Zaffalon, “Time for a change:
a tutorial for comparing multiple classifiers through bayesian analysis,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp. 2653–
2688, 2017.

[26] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time series
analysis: forecasting and control. John Wiley & Sons, 2015.

[27] G. Jain and B. Mallick, “A study of time series models arima and ets,”
Available at SSRN 2898968, 2017.

[28] R. J. Hyndman, Y. Khandakar et al., Automatic time series for forecast-
ing: the forecast package for R. Monash University, Department of
Econometrics and Business Statistics . . . , 2007, no. 6/07.

[29] F. A. Gers, D. Eck, and J. Schmidhuber, “Applying lstm to time series
predictable through time-window approaches,” in Neural Nets WIRN
Vietri-01. Springer, 2002, pp. 193–200.

[30] T.-Y. Kim and S.-B. Cho, “Predicting residential energy consumption
using cnn-lstm neural networks,” Energy, vol. 182, pp. 72–81, 2019.

[31] I. E. Livieris, E. Pintelas, and P. Pintelas, “A cnn–lstm model for gold
price time-series forecasting,” Neural Computing and Applications, pp.
1–10, 2020.

[32] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-
c. Woo, “Convolutional lstm network: A machine learning approach for
precipitation nowcasting,” in Advances in neural information processing
systems, 2015, pp. 802–810.

[33] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[34] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT Press Cambridge, MA, 2006, vol. 2, no. 3.

[35] H. Drucker, C. J. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
“Support vector regression machines,” in Advances in neural information
processing systems, 1997, pp. 155–161.

[36] J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” Journal
of the American statistical Association, vol. 76, no. 376, pp. 817–823,
1981.

[37] J. H. Friedman et al., “Multivariate adaptive regression splines,” The
annals of statistics, vol. 19, no. 1, pp. 1–67, 1991.

[38] B.-H. Mevik, R. Wehrens, and K. H. Liland, pls: Partial Least Squares
and Principal Component Regression, 2018. [Online]. Available:
https://CRAN.R-project.org/package=pls

[39] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[40] Q. Sun, M. V. Jankovic, L. Bally, and S. G. Mougiakakou, “Predicting
blood glucose with an lstm and bi-lstm based deep neural network,” in
2018 14th Symposium on Neural Networks and Applications (NEUREL).
IEEE, 2018, pp. 1–5.

[41] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv preprint
arXiv:1701.01887, 2017.

[42] R. T. Clemen and R. L. Winkler, “Combining economic forecasts,”
Journal of Business & Economic Statistics, vol. 4, no. 1, pp. 39–46,
1986.

[43] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

