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Abstract. We present contextual bandits for personalized recom-
mendation scenarios where user preferences are available. The model
is a composite of a personalized model and a one-serves-all com-
ponent where the latter resembles the mainstream recommendation.
The derivation is consequentially carried out using Fenchel-Legrende
conjugates and thus applicable in many different learning tasks. We
present a unified framework that allows for quickly adapting our con-
textual bandits to different applications.

1 Introduction

Recommender systems are designed to serve user needs by extract-
ing relevant content from a large amount of available information.
User needs are generally characterized by individual interests of a
user. However, considering many users at once gives rise to joint in-
terests (e.g., topselling items) and needs that could be captured by a
one-serves-all recommendation. Therefore, personalized recommen-
dation aims to derive the individual preferences as well as their col-
lective aggregate over all the users.

Traditional recommender systems focus on the recommendation
problem from different perspectives. There are non-personalized ap-
proaches that focus on short-term goals and inferring topics of user
sessions [7, 6], while collaborative filtering methods, on the other
hand, aim to capture long-term preferences of users [4, 3]. The col-
laborative approach computes probably interesting items to a user by
focusing on interests of similar peers. Whenever user preferences are
available, it is convenient to directly learn user profiles from the par-
tial order of items. Since preferences are often contradictive across
serveral users, such an approach naturally extends to personalized
recommendations with a dedicated model for every user. To also pro-
vide recommendations for new users with only little historical traffic,
the individual models can be used as offsets to a one-serves-all (or
average) model.

In this paper, we present a unified contextual bandit framework
for personalized recommendation. The underlying scheme models
the preferences between items which consists of an average part and
an individual mnodel to compute the expected reward. We propose
to leverage ideas from [5] to model our preference-based approach
as a contextual bandit that is augmented by an individual offset. All
derivations are carried out in dual space and using Fenchel-Legendre
conjugates of the loss functions which renders our approach for a
wide range of loss functions. In the next section, we derive a gener-
alized model for personalized preference-based recommendation in
dual space.
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2 Linear Bandits in Dual Space

In this paper, we focus on sequential recommender systems for m
users, U = {u1, u2, ..., um}, and n items, A = {a1, a2, ..., an}.
Every item ai is characterized by a set of attributes given by a fea-
ture vector zi ∈ Rk. At each time step t, the goal of the system is
to recommend items to the current user that are more likely to be
clicked. We show how to derive the general optimization framework
for linear bandits in dual space considering both the average and per-
sonalized models.

The proposed model is defined by a single bandit which learns the
preferences between items for all the users. Assume that zi and zk
belong to the items ai and ak, respectively, thus, we assign zi�k :=
zi − zk to show the preference of item ai over ak. The payoff is
therefore determined as a linear function of the preference,

E[rt,i�k|ut = uj ] = θ
>zi�k + β>t zi�k + bik,

where θ is the weight vector for the average model, while βt = βj is
the individual parameter for user j. rt,i�k shows the reward obtained
by choosing item ai over ak at time t. For simplicity, we augment the
feature vectors by a constant term (e.g., zi�k,0 = 1) and move bik
accordingly into the θ and β.

Let at = ai be the selected item to recommend at time t, the
problem in [5] is then relaxed to a simple one-armed bandit which
learns the preferences between contexts, i.e., item features,

hθ,βj
(zi�l; ∃l) = (θ + βj)

>zi�l,

where hypothesis h predicts the expected payoff for the specific user
uj on item ai. Moreover, we substitute zi�l by zt as the context at
time t. Given an appropriate loss function V (., rt), the regularized
optimization problem can be stated as

inf
θ

β1,...,βm

1

T

T∑
t=1

V ([θ + βt]
>zt, rt) +

λ

2
‖θ‖2 +

µ̂

2

∑
j

‖βj‖
2.

(1)

Let C = 1
λT

and µ = µ̄
λ

, by incorporating yt as shorthand for the
predicted payoff we have

inf
θ,y

β1,...,βm

C
T∑
t=1

V (yt, rt) +
1

2
‖θ‖2 +

µ

2

∑
j

‖βj‖
2

s.t. ∀t : (θ + βt)
>zt = yt,

The equivalent unconstrained problem is derived by incorporating



Lagrange multipliers, α ∈ RT ,

sup
α

inf
θ,y

β1,...,βm

C

T∑
t=1

V (yt, rt) +
1

2
‖θ‖2 +

µ

2

∑
j

‖βj‖
2

−
T∑
t=1

αt([θ + βt]
>zt − yt).

Setting the partial derivatives w.r.t. θ to zero, leads to θ =∑T
t=1 αtzt = Z>α, where Z ∈ RT×k is the design matrix given

by the training data. The derivatives w.r.t. βj gives

βj =
1

µ

∑
t

βt=βj

αtzt =
1

µ

∑
t

φjtαtzt =
1

µ
(Z ◦ φj)>α,

where φj ∈ RT×1 is a binary vector which is 1 when βt = βj , and
zero otherwise, and ◦(., .) stands for element-wise product. Substi-
tuting the optimality conditions into the optimization function yields

sup
α

inf
y

C

T∑
t=1

[V (yt, rt) +
1

C
αtyt]−

1

2
α>ZZ>α

− 1

2µ

∑
j

α>(Z ◦ φj)(Z ◦ φj)>α.

Recall that the Fenchel-Legendre conjugate of a function g is defined
as g∗(u) = supx u

>x − g(x) [2]. Thus, by moving the infimum
inside the summation and given the dual loss

V ∗(−αt
C
, rt) = sup

yt

−αt
C
yt − V (yt, rt),

the generalized optimization problem in dual space reduces to

sup
α

−C
T∑
t=1

V ∗(−αt
C
, rt)−

1

2
α>ZZ>α

− 1

2µ

∑
j

α>(Z ◦ φj)(Z ◦ φj)>α. (2)

2.1 Upper Confidence Bound

The challenge in bandit-based approaches is to balance exploration
and exploitation to minimize the regret. Auer [1] demonstrates that
confidence bounds provide useful means to balance the two oppo-
sitional strategies. The idea is to use the predicted reward together
with its confidence interval to reflect the uncertainty of the model
given the actual context.

In our contextual bandit, the expected payoff is approximated by a
linear model with an (arbitrary) loss function. The uncertainty U of
the obtained value for each arm is therefore proportional to the vari-
ance σ2 of the expected payoff, U = cσ, where σ2 is estimated from
training points in neighboring contexts as well as the model parame-
ters. The uncertainty is added as an upper bound to the prediction to
produce a confidence bound for selection strategy across the arms.

2.2 Optimization

Equation (2) can be optimized with standard techniques such as
gradient-based approaches. The unconstrained problem needs to be

maximized w.r.t. the dual parameters α and is given by

sup
α

− CI>V ∗(−α
C
, r)− 1

2
α>ZZ>α

− 1

2µ

∑
j

α>(Z ◦ φj)(Z ◦ φj)>α.

The gradient wrt α is obtained by setting the derivative to zero.

− C
∂V ∗(−α

C
, r)

∂α
− (ZZ> − 1

µ
[
∑
j

(Z ◦ φj)(Z ◦ φj)>])α = 0

The actual form of the gradient depends on the dual loss V ∗. Note
that instantiations often give rise to more efficient optimization tech-
niques than the general form in Equation (2) allows. Nevertheless,
the sketched gradient-based approach will always work in case a
general optimiser is needed, e.g., in cases where several loss func-
tions should be tried out. Once the optimal αopt has been found, it
can be used to compute the primal parameters. Alternatively, a ker-
nel KZ = φZ(Z,Z) could be deployed in the dual representation to
allow for non-linear and convoluted feature space.

2.2.1 Instantiation: Squared Loss

We present the optimization algorithm for the special case of squared
loss. The dual of squared loss is given by

V ∗(−αt
C
, rt) =

1

2C2
α2
t −

1

C
αtrt,

which leads to the following objective,

max
α

− 1

2C
α>α+ r>α

− 1

2
α>[ZZ> +

1

µ
(
∑
i

φi ⊗ φ
>
i ) ◦ ZZ

>]α,

where ⊗ denotes the vector outer product. Rephrasing the problem
as a minimization task and setting P = 1

C
I + ZZ> + 1

µ
(
∑
i φi ⊗

φ>i ) ◦ ZZ>, and q = −r, the task becomes a standard quadratic
optimization problem,

min
α

1

2
α>Pα+ q>α.

The confidence bound for the linear bandit setting with squared loss
is given by

U = c
√
z>t (Z

>Z + λI)−1zt.
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