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Abstract. Setting the optimal hyperparameters of a learning algorithm
is a crucial task. Common approaches such as a grid search over the
hyperparameter space or randomly sampling hyperparameters require
many configurations to be evaluated in order to perform well. Hence, they
either yield suboptimal hyperparameter configurations or are expensive
in terms of computational resources. As a remedy, Hyperband, an ex-
ploratory bandit-based algorithm, introduces an early-stopping strategy
to quickly provide competitive configurations given a resource budget
which often outperforms Bayesian optimization approaches. However,
Hyperband keeps sampling iid configurations for assessment without tak-
ing previous evaluations into account. We propose HyperUCB, a UCB
extension of Hyperband which assesses the sampled configurations and
only evaluates promising samples. We compare our approach on MNIST
data against Hyperband and show that we perform better in most cases.
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1 Introduction

The performance of machine learning models highly depends on the choice of
the hyperparameters. For many years, grid search was the standard approach
for tuning the underlying models. However, with the emergence of more sophis-
ticated models such as in deep learning, grid search is no longer practical due
to the large hyperparameter space, and thus simpler approaches such as random
search became more desirable and showed to be more effective [2].

Over the last few years, the problem of hyperparameter optimization has been
successfully presented as metalearning using Bayesian optimization methods
[3, 5, 10]. Nevertheless, bandit-based approaches exhibit superb performance in
many scenarios [8, 9]. Li et al. [8] propose a method, called Hyperband (HB), for
hyperparameter selection which, in their settings, outperforms Bayesian meth-
ods while providing a significant speed-up compared to those competitors. Hy-
perband is based on the successive halving approach [11] for improving random
search by an adaptive allocation of available resources to different configurations.

However, Hyperband is an amended version of random search in which there
is no learning to guide the search. In addition, despite the fact that Hyperband
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Algorithm 1: Hyperband

input : R, η

1 initialization: smax = blogη Rc and B = (smax + 1)R ;

2 for s ∈ {smax, smax − 1, . . . , 0} do

3 n = dB
R

ηs

s+1
e, r = Rη−s;

4 Λs =get hyperparameter configuration(n);
5 for i ∈ {0, . . . , s} do
6 ni = bnη−ic , ri = rηi;
7 L(Λs) = {run then return val loss(λ, ri) | λ ∈ Λs};
8 Λs = top k(Λs,L(Λs), bni

η
c);

9 end

10 end
output: configuration λ with lowest validation loss seen so far

is highly efficient for finding a good configuration, it does not find an optimum
fast enough. Hence, modeling the hyperparameter optimization as a learning
problem is more reliable than a search algorithm. Therefore, instead of only
sampling iid configurations of hyperparameters as Hyperband does, we propose
to leverage the information of previous batches in order to pre-evaluate sampled
configurations and to discard unpromising ones. This is done by a UCB bandit
strategy in a contextual setting.

In this paper, we introduce HyperUCB, a model-based bandit framework, to
accommodate exploitation into the purely exploratory algorithm of Hyperband.
In HyperUCB, the arm selection is carried out by incorporating an Upper Con-
fidence Bound (UCB) strategy [1] to guide the search within the iterations in
order to balance exploration vs. exploitation. We further model the arms in a
contextual setting which generalizes the model for unseen arms (i.e., configura-
tions). Therefore, we employ a modified version of LinUCB [7] in our approach to
achieve a model-based Hyperband for the task of hyperparameter optimization.
Empirically, we show that our proposed approach either outperforms Hyperband
or performs on par on optimizing the hyperparameters of a deep learning model.

2 Background

2.1 Problem Setting

Let D = (X ,Y) be a data set and M be a learning algorithm. The data is
usually split into a training set for optimizing the parameters of the model, a
validation set for optimizing the hyperparameters and a test set for evaluating
the overall performance of the model. Assume that H is the set of all possible
hyperparameter configurations, we denote by L(λ) the loss of M using λ ∈ H
on the validation set. The goal is to find the best hyperparameter configuration
λ? = arg minλ L(λ), which minimizes the validation loss for a given budget.
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2.2 Hyperband

Hyperband (HB) is an anytime search algorithm based on multi-armed bandits
to find the best configuration for a machine learning approach given limited re-
sources. The method performs several iterations based on the available resources,
and in each iteration repeatedly calls the SuccessiveHalving method [6] for choos-
ing the best ones. Let R be the maximum budget available for training various
instances of a model, then Hyperband conducts smax = blogη Rc iterations for
exploration, where η is the ratio of sampling the best arms.

Hyperband is outlined in Algorithm 1. Note that the evaluation of the hy-
perparameters λ ∈ Λs in line 7 can be done in parallel. Within the algorithm,
three methods are used. The method get hyperparameter configuration(n)
returns a set Λs of n ∈ N hyperparameter configurations {λ1, . . . , λn} sampled
iid from a given hyperparameter spaceH of feasible configurations. Furthermore,
by calling run then return val loss(λ, r), we obtain the validation loss L(λ)
of configuration λ and resource allocation r. Finally, top k(Λs,L(Λs), k) returns
a subset of Λs of size k with the k lowest validation losses given in L(Λs).

2.3 Contextual Bandits

The multi-armed bandits in contextual settings benefit from the available infor-
mation (context) to make a better decision at the time of action (arm) selection.
That means, before making a decision, some context is shown to the bandits, and
depending on the situation the decision might be different. The context could
include the information about the current state, the attributes of the arms, or
any other available data. A contextual bandit aims at finding a mapping be-
tween the contexts and their corresponding outcomes in order to minimize the
total regret. Li et al. [7] propose LinUCB in which the outcome of every arm is
modeled as a linear function of the context. In the next section, we present a
modified form of LinUCB to design contextual Hyperband.

3 Contextual HyperUCB

In this section, we present our approach to upgrade Hyperband to a contextual
bandit method using a UCB strategy. Let H be the space of all possible hyper-
parameter configurations for a machine learning approach. We are interested in
finding λ? ∈ H that gives the best performance y? in terms of the validation loss
L of the model

λ? = arg min
λ
L(λ). (1)

We assume that a hyperparameter configuration can be represented by a d-
dimensional vector λ and model the contextual bandit as a linear function of
the configurations. After learning the parameters θ of the linear model, a new
configuration λ can be evaluated as ŷ = θ>λ. The optimization problem in Equa-
tion (1) suggests a lower confidence bound strategy since we aim to minimize L.
However, by considering negative loss values −y, we can retain the usual upper



4 Maryam Tavakol, Sebastian Mair, and Katharina Morik

Algorithm 2: HyperUCB

input : R, η, α, γ

1 initialization (HB): smax = blogη Rc and B = (smax + 1)R;

2 initialization (UCB): θ = 0d×1, X ← ∅0×d, A← γId×d, n0 = ηsmax ;

3 for s ∈ {smax, smax − 1, . . . , 0} do
4 compute n and r as in HB;
5 Λs = top ucb(get hyperparameter configuration(n0), θ, A, n);
6 append λ to X ∀λ ∈ Λs and initialize yλ = 0;
7 for i ∈ {0, . . . , s} do
8 compute ni and ri as in HB;
9 for λ ∈ Λs do

10 A = A+ λλ>;
11 yλ = −run then return val loss(λ, ri);

12 end

13 θ = (X>X + γI)−1X>y ;
14 Λs = top ucb(Λs,θ, A, bni

η
c);

15 end

16 end

17 top ucb (Λs,θ, A, n):

18 pλ = θ>λ+ α
√
λ>A−1λ ∀λ ∈ Λs;

19 return top k(Λs,p, n)

confidence bound (UCB) strategy since maximizing the negative validation loss
−L is equivalent to minimizing L. The UCB approach trades off exploration
and exploitation as it also considers the uncertainty for a specific hyperparame-
ter configuration. The score pλ is thus obtained from θ>λ+ α

√
λ>A−1λ, where

A = X>X+γI is the regularized design matrix of the configurations with γ ≥ 0
which have been evaluated so far and α > 0 is a trade-off parameter.

Algorithm 2 summarizes our approach for HyperUCB. In this algorithm, the
bandit model is learned in line 13, and together with the covariance matrix it
computes the upper confidence values in two sampling steps. At every iteration,
a number of n0 configurations are randomly sampled as in HB, and from those,
the bandit model selects the n most promising ones. The next sampling step is
at line 14, where top ucb is performed on the values of pλ rather than yλ. Note
that the matrix A is updated every time a configuration is chosen, even within
an iteration, which leads to a tighter confidence interval for those configurations.

4 Empirical Study

In this section, we evaluate the performance of the HyperUCB strategy compared
to Hyperband [8]. The experiments are conducted on the MNIST data which
consists of 60,000 training and 10,000 test instances. As a model, we use a simple
multi-layer perceptron (MLP) which learns to classify images of handwritten
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Hyperparameter Range Type

learning rate [0.0001, 1] float
# hidden layers {1, 2, 3, 4, 5} integer
# neurons {16, 32, . . . , 512} integer
activation {relu, tanh, sigmoid} categorical

Table 1. Hyperparameters of the multi-layer perceptron.

digits. We use the categorical cross entropy as a loss function and the RMSprop
optimizer. The validation loss is computed on the hold-out data. Within the
MLP we use four hyperparameters which are outlined in Table 1. We determine
a minimum budget of one unit of resource which corresponds to 100 mini-batches
of size 100. The maximum budget consists of R units of resources, hence 100R
mini-batches. We use the default value of η = 3 as specified in Hyperband. Our
approach contains two additional parameters: the exploration-exploitation trade-
off α and a regularization-weight γ in ridge regression. We select the values of
α = 0.4 as it gives best performance in [7] and the regularization is set to γ = 0.1.

Fig. 1. Performance w.r.t. the budget. Fig. 2. Performance w.r.t. the time.

Figure 1 shows the validation loss averaged over five independent runs for
various maximum budgets including standard errors. With a max. budget higher
than 19, HyperUCB outperforms Hyperband as it consistently yields lower val-
idation errors. We credit this finding to the fact that using a higher budget,
more rounds are conducted on which the bandit model can learn to discriminate
promising from unpromising hyperparameter configurations. This can be hardly
done with lower max. budgets due to the lack of training data.

Figure 2 depicts the average validation loss in dependence of computational
time, measured in seconds, for a budget of 45. It can be seen that HyperUCB
performs on par with Hyperband, meaning it is as fast or faster than Hyperband.
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5 Conclusion and Future Work

In this paper, we presented HyperUCB, a contextual extension using a UCB
strategy for Hyperband, which is a bandit-based method for hyperparameter
optimization. The idea was as follows: Instead of sampling n iid hyperparameter
configurations in each round for evaluation, we sampled more configurations,
assessed them using a multi-armed bandit with a UCB strategy and only eval-
uated the n best configurations. This way, we guided the sampling procedure
towards more promising configurations and avoided evaluating hyperparameters
which are already assumed to yield a high validation error. An experiment on the
MNIST data showed that it outperforms the Hyperband baseline for moderate
budgets at optimizing several hyperparameters of a multi-layer perceptron.

Further work will utilize the ideas from Tavakol & Brefeld [12], in which
the parameters of the bandit model can be learned using kernel methods in the
dual space to capture non-linearity. We also plan on extending the experimental
setup by adding more baselines, e.g., BO-HB [4] as well as considering multiple
hyperparameter optimization scenarios on various data sets and models.
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