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Abstract

Deep neural networks are in the limelight of machine learn-
ing with their excellent performance in many data-driven ap-
plications. However, they can lead to inaccurate predictions
when queried in out-of-distribution data points, which can
have detrimental effects especially in sensitive domains, such
as healthcare and transportation, where erroneous predictions
can be very costly and/or dangerous. Subsequently, quantify-
ing the uncertainty of the output of a neural network is often
leveraged to evaluate the confidence of its predictions, and
ensemble models have proved to be effective in measuring
the uncertainty by utilizing the variance of predictions over a
pool of models. In this paper, we propose a novel approach
for uncertainty quantification via ensembles, called Random
Activation Functions (RAFs) Ensemble, that aims at improv-
ing the ensemble diversity toward a more robust estimation,
by accommodating each neural network with a different (ran-
dom) activation function. Extensive empirical study demon-
strates that RAFs Ensemble outperforms state-of-the-art en-
semble uncertainty quantification methods on both synthetic
and real-world datasets in a series of regression tasks.

Introduction
Recent advances in deep neural networks have demonstrated
remarkable performance in a wide variety of applications,
ranging from recommendation systems and improving user
experience to natural language processing and speech recog-
nition (Abiodun et al. 2018). Nevertheless, blindly rely-
ing on the outcome of these models can have harmful ef-
fects, especially in high-stake domains such as healthcare
and autonomous driving, as models can provide inaccu-
rate predictions when queried in out-of-distribution data
points (Amodei et al. 2016). Consequently, correctly quan-
tifying the uncertainty of models’ predictions is an admissi-
ble mechanism to distinguish where a model can or cannot
be trusted, and thus, increases the transparency of models
about their capabilities and limitations (Abdar et al. 2021).
Uncertainty Quantification (UQ) is important for a variety
of reasons. For instance, in order to preserve the model’s
credibility, it is essential to report and communicate the en-
countered uncertainties regularly (Volodina and Challenor
2021). Additionally, models’ predictions are inevitably un-
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certain in most cases, which has to be addressed to increase
their transparency, trustworthiness, and reliability.

In the machine learning literature, uncertainty is usu-
ally decomposed into two different types, namely aleatoric
uncertainty and epistemic uncertainty (Kiureghian and
Ditlevsen 2009). Aleatoric uncertainty, aka data uncertainty,
refers to the inherent uncertainty that stems from the data
itself, e.g., noise. On the other hand, epistemic uncertainty,
also called model uncertainty, is the type of uncertainty that
occurs due to the lack of sufficient data. While data uncer-
tainty cannot be alleviated, model uncertainty can be ad-
dressed by e.g., acquiring more data. Let σ2

a and σ2
e de-

note the aleatoric and epistemic uncertainties, respectively.
Since the distinction between the two is imprecise to some
degree (Sullivan 2015), we focus on the predictive (total)
uncertainty, which is defined as the sum of the two

σ2
p = σ2

a + σ2
e. (1)

Accordingly, the approaches developed for uncertainty esti-
mation can be categorized into three groups: Bayesian UQ
methods, ensemble UQ methods, and a combination of both,
i.e., Bayesian ensemble UQ (Abdar et al. 2021). In this pa-
per, we focus on ensemble UQ techniques, either Bayesian
or non-Bayesian, as this group is less explored compared to
the solely Bayesian techniques. An ensemble model aggre-
gates the predictions of multiple individual base-learners (or
ensemble members), which in our case are neural networks
(NNs), and the empirical variance of their predictions gives
an approximate measure of uncertainty. The idea behind this
heuristic is highly intuitive: the more the base-learners dis-
agree on the outcome, the more uncertain they are. There-
fore, the goal of ensemble members is to have a great level
of disagreement (variability) in the areas where little or no
data is available, and to have a high level of agreement in
regions with abundance of data (Pearce et al. 2018).

In this paper, we propose a novel method, called Ran-
dom Activation Functions Ensemble (RAFs Ensemble), for
a more robust uncertainty estimation in (deep) neural net-
works. RAFs Ensemble is developed on top of Anchored
Ensemble technique, proposed by (Pearce et al. 2018), how-
ever, instead of initializing each NN member in the ensemble
with the same activation function, the NNs in RAFs Ensem-
ble are accommodated with different (random) activation
functions in the hidden layers. This simple, yet crucial, mod-
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ification greatly improves the overall diversity of the ensem-
ble, which is one of the most important components in form-
ing a successful ensemble. We empirically show that RAFs
Ensemble provides high quality uncertainty estimates com-
pared to five state-of-the-art ensemble methods, that is Deep
Ensemble (Lakshminarayanan, Pritzel, and Blundell 2017),
Neural Tangent Kernel Gaussian Process Parameter Ensem-
ble (He, Lakshminarayanan, and Teh 2020), Anchored En-
semble (Pearce et al. 2018), Bootstrapped Ensemble of NNs
Coupled with Random Priors (Osband, Aslanides, and Cas-
sirer 2018), and Hyperdeep Ensemble (Wenzel et al. 2020).
The comparisons are performed in a wide range of regres-
sion tasks on both synthetic and real-world datasets in terms
of negative log-likelihood and root mean squared error.

Related Work
Uncertainty Quantification (UQ) is an active field of re-
search and various methods have been proposed to effi-
ciently estimate the uncertainty of machine learning mod-
els (see Abdar et al. 2021 for an extensive overview). While
most research focuses on Bayesian deep learning (Srivastava
et al. 2014; Blundell et al. 2015; Sensoy, Kandemir, and Ka-
plan 2018; Fan et al. 2020; Järvenpää, Vehtari, and Mart-
tinen 2020; Charpentier, Zügner, and Günnemann 2020),
deep ensemble methods, which benefit from the advantages
of both deep learning and ensemble learning, have been
recently leveraged for empirical uncertainty quantification
(Egele et al. 2021; Hoffmann, Fortmeier, and Elster 2021;
Brown, Bhuiyan, and Talbert 2020; Althoff, Rodrigues, and
Bazame 2021). Although Bayesian UQ methods have solid
theoretical foundation, they often require significant changes
to the training procedure and are computationally expen-
sive compared to non-Bayesian techniques such as ensem-
bles (Egele et al. 2021; Rahaman and Thiery 2021; Laksh-
minarayanan, Pritzel, and Blundell 2017).

Lakshminarayanan, Pritzel, and Blundell (2017) are
among the first to challenge Bayesian UQ methods by
proposing Deep Ensemble, a simple and scalable technique,
that demonstrates superb empirical performance on a vari-
ety of datasets. However, one of the challenges of ensemble
techniques when quantifying uncertainty is that they tend to
give overconfident predictions (Amodei et al. 2016). To ad-
dress this, Pearce et al. (2018) propose to also regularize the
model’s parameters w.r.t. the initialization values, instead
of zero, leading to Anchored Ensembles, which addition-
ally allows for performing Bayesian inference in NNs. He,
Lakshminarayanan, and Teh (2020) relate Deep Ensembles
to Bayesian inference using neural tangent kernels. Their
method, i.e., Neural Tangent Kernel Gaussian Process Pa-
rameter Ensemble (NTKGP-param), trains all layers of a fi-
nite width NN, obtaining an exact posterior interpretation in
the infinite width limit with neural tangent kernel parame-
terization and squared error loss. They prove that NTKGP-
param is always more conservative than Deep Ensemble,
yet, its advantages are generally not clear in practice.

A prominent advance to the Bayesian ensemble UQ meth-
ods is the bootstrapped ensemble of NNs coupled with ran-
dom priors, proposed by (Osband, Aslanides, and Cassirer

2018), in which, the random prior function and neural mod-
els share an input and a summed output, but the networks
are the only trainable parts, while the random prior remains
untrained throughout the whole process. Furthermore, Wen-
zel et al. (2020) exploit an additional source of randomness
in ensembles by designing ensembles not only over weights,
but also over hyperparameters. Their method, called Hyper-
deep Ensemble, demonstrates high accuracy for a number
of different classification tasks. Nevertheless, despite the re-
cent contributions in ensemble UQ methods, the research in
this direction still needs further advancement.

Toward Robust Uncertainty Estimation
Preliminaries
Following the notations of (Lakshminarayanan, Pritzel, and
Blundell 2017), let Strain be a training dataset consist-
ing of n independently and identically drawn (i.i.d.) data
points, Strain = {xi, yi}ni=1, where xi ∈ Rd denotes a
d-dimensional feature vector and yi ∈ R is a scalar out-
put. Similarly, Stest indicates the test set. Subsequently, X
represents the design matrix and y indicates the output vec-
tor, where (Strain.X, Strain.y) and (Stest.X, Stest.y) rep-
resent the train and test sets, respectively. Without the loss
of generality, we consider the regression tasks of the form

y = f(X) + ε,

where ε is a normally distributed constant noise, i.e., ε ∼
N (0,σ2

a), and is assumed to be known. The goal is hence
to quantify the predictive uncertainty σ2

p associated with
Stest.y, while optimizing f on the training data.

We adapt the regularized loss function from the Anchored
Ensemble technique (Pearce et al. 2018), in which, the reg-
ularization of the models’ parameters are carried out w.r.t.
their initialization values instead of zero. Consequentially,
given θj as the parameters of the jth base-learner, the objec-
tive function is as follows

L(θj) =
1

n
||y − ŷj ||22 +

1

n
||Γ1/2(θj − θ0,j)||22, (2)

where θ0,j is derived from the prior distribution, θ0,j ∼
N (µ0,Σ0), and Γ is the regularization matrix. Furthermore,
minimizing this objective allows for performing Bayesian
inference in NNs. However, this technique only models the
epistemic uncertainty, while aleatoric uncertainty is assumed
to be constant (Pearce et al. 2018), which is a limitation, as
it is not always possible to distinguish the different origins
or types of uncertainty in practice (see Equation 1).

Therefore, in this paper, we aim at enhancing the perfor-
mance of the ensemble toward a more robust uncertainty es-
timation. The literature suggests that diversifying the ensem-
bles is effective in improving their predictive performance
both theoretically and empirically (Zhou 2012; Zhang and
Ma 2012; Hansen and Salamon 1990; Krogh and Vedelsby
1994). Ideally, diversity is achieved when the predictions
made by each model in the ensemble are independent and
uncorrelated. However, generating diverse ensemble mem-
bers is not a straightforward task. The main impediment is
the fact that each neural network is trained on the same train-
ing data to solve the same problem, which usually results in



a high correlation among the individual base-learners (Zhou
2012). In the subsequent section, we introduce a simple tech-
nique to efficiently improve the overall diversity of the en-
semble for a more reliable uncertainty quantification.

RAFs Ensemble
In this section, we present Random Activation Functions
(RAFs) Ensemble for uncertainty estimation, which can be
extended to all ensemble methods in terms of methodolog-
ical modification. When a (Bayesian) ensemble is lever-
aged to estimate the uncertainty of a deep neural network
model, we propose to increase the diversity of predictions
among the ensemble members using varied activation func-
tions (AFs), in addition to the random initialization of the
parameters. To do so, instead of initializing the neural net-
works with the same activation function, each NN is accom-
modated with a different (random) activation function. Sub-
sequently, distinct activation functions account for different
non-linear properties introduced to each ensemble member,
therewith improving the overall diversity of the ensemble.

As mentioned previously, the ensemble diversity is one of
the most important building blocks when it comes to cre-
ating a successful ensemble (Hansen and Salamon 1990).
Hence, it might be preferable to combine the predictions of
top-performing base-learners with the predictions of weaker
ones (Zhou 2012). Otherwise, stacking only strong models
will likely result in a poor ensemble as the predictions made
by the models will be highly correlated, and thus, the ensem-
ble diversity will be greatly limited. Therefore, the choice
of activation functions should be motivated purely by their
variability and not their appropriateness for the task at-hand.

Let µ0 be the prior means, Σ0 be the prior covariance,
σ̂2
a be an estimate of data noise, m denote the number of

base-learners, and NNj indicate the jth member, the entire
procedure for both training and prediction is summarized in
Algorithm 1. In this algorithm, a regularization matrix is first
created and a set of activation functions is defined (line 1-2).
Then, the NNs in the ensemble are trained to minimize the
loss function defined in Equation 2 with stochastic gradi-
ent descent, using arbitrary optimizer and no early stopping
(line 3-13). Note that if the size of the ensemblem is smaller
or equal to the cardinality of the AFs set k, then each NN is
trained with a different activation function, and with random
functions from the set, otherwise (line 7-11). Consequently,
predictions are made with each ensemble member (line 14-
16), which are then averaged and an estimate of the predic-
tive uncertainty is computed (line 17-19).

Empirical Study
Experimental Setups
In the experiments, the base-learners of RAFs Ensemble are
multilayer perceptrons that consist of one hidden layer of
100 neurons. The ensemble sizem is set to five. This is stan-
dard for the implementations of all methods in this paper, as
m = 5 proved to be empirically sufficient for obtaining pre-
dictive uncertainty estimates in the experiments. In addition,
we choose a set of seven activation functions which is com-
prised of (i) Gaussian Error Linear Unit (GELU) (Hendrycks

Algorithm 1: RAFs Ensemble

Input: Strain, Stest, priors µ0 and Σ0, m, σ̂2
a

Output: Estimate of predictive mean ŷ and variance σ̂2
p

1: Γ← σ̂2
aΣ−10 . Regularization matrix

2: A← {a1, . . . , ak} . Set of k AFs
3: for j in 1 : m do . Train the ensemble
4: Create NNj with θj,0 ← N (µ0,Σ0)
5: if j ≤ k then
6: αj = aj
7: else
8: αj ← Randomly selected from A
9: end if

10: NNj .train(Strain,Γ,θj,0, αj) using loss in Eq. 2
11: end for
12: for j in 1 : m do . Predict with the ensemble
13: ŷj = NNj .predict(Stest.X)
14: end for

15: ŷ = 1
m

m∑
j=1

ŷj . Mean predictions

16: σ̂2
e = 1

m−1

m∑
j=1

(ŷj − ŷ)2 . Epistemic variance

17: σ̂2
p = σ̂2

e + σ̂2
a . Total variance Eq. 1

18: return ŷ, σ̂2
p

and Gimpel 2016), (ii) Softsign (Turian, Bergstra, and Ben-
gio 2009), (iii) Swish (Ramachandran, Zoph, and Le 2018),
(iv) Scaled Exponential Linear Unit (SELU) (Klambauer
et al. 2017), (v) hyperbolic tangent (tanh), (vi) error acti-
vation function, and (vii) linear (identity) activation func-
tion. Furthermore, the number of testing samples is set to
be always larger than the number of training points n to
detail the uncertainty. Moreover, to account for epistemic
uncertainty, the synthetic testing feature vectors x ∈ Stest
range over wider intervals compared to x ∈ Strain and both
are sampled uniformly at random. The code is available at
https://github.com/YanasGH/RAFs code for reproducibility.

Baselines. We include five state-of-the-art methods as
baselines for empirical comparison with RAFs Ensemble
as follows. (i) DE (Lakshminarayanan, Pritzel, and Blun-
dell 2017), (ii) AE (Pearce et al. 2018), (iii) HDE (Wenzel
et al. 2020), (iv) RP-param (Osband, Aslanides, and Cassirer
2018), and (v) NTKGP-param (He, Lakshminarayanan, and
Teh 2020), on both synthetic and real-world datasets with
different dimensionalities (see the Technical appendix for a
detailed overview). To ensure fair comparison between the
UQ techniques, roughly the same amount of time has been
put into hyperparameter tuning for each method.

Synthetic Data. We generate multiple synthetic datasets
that fall into four categories: physical models (PM), many
local minima (MLM), trigonometric (T), and others (O).
Each set in the PM category is generated from a physical
mathematical model, such that all values in Strain and Stest
are achievable in the real world. Generally, the PM datasets

https://github.com/YanasGH/RAFs_code


have complex modeling dynamics and can be characterized
as having predominant epistemic uncertainty due to the con-
siderably wider testing sampling regions by design. Simi-
larly, the MLM data, generated from functions with many lo-
cal minima, are also designed so that the model uncertainty
is higher than the aleatoric one. These datasets are usually
hard to approximate due to their inherent high-nonlinearity
and multimodality. Another category with higher epistemic
uncertainty is trigonometric, such as data generated by (He,
Lakshminarayanan, and Teh 2020) and (Forrester, Sobester,
and Keane 2008), where the training data is partitioned into
two equal-sized clusters in order to detail uncertainty on out-
of-distribution data (see Figure 1). In contrast, the predomi-
nant type of uncertainty in the O category is aleatoric. This
category includes datasets generated from various functions
such as rational and product integrand functions. It is distin-
guished from the rest of the categories by its high interaction
effects. The dimensionality of all datasets can range from
one to ten and we consider two datasets per dimension, thus,
the total number of synthetic data is 20. More detail on how
the data is created can be found in the Technical appendix.

Real-world Data. Additionally, we use five real-world
datasets for evaluation: Boston housing, Abalone shells
(Nash et al. 1994), Naval propulsion plant (Coraddu et al.
2014), Forest fire (Cortez and de Jesus Raimundo Morais
2007), and Parkinson’s disease dataset (Little et al. 2007).
To account for aleatoric uncertainty (some) context factors
are disregarded, such that this type of uncertainty is charac-
teristically high (see Technical appendix for more details).

Evaluation Criteria. We employ two evaluation criteria
to gauge the overall performance of the trained models,
namely calibration and robustness to the distribution shift.
Both measures are inspired by the practical applications of
NNs, as generally there is no theoretical evidence for evalu-
ating uncertainty estimates (Abdar et al. 2021). Calibration
is defined as the analytical process of adjusting the inputs
with the purpose of making the model to predict the ac-
tual observations as precisely as possible (Bijak and Hilton
2021). The quality of calibration can be measured by proper
scoring rules such as negative log-likelihood (NLL). NLL is
a common choice when it comes to evaluating UQ estimates,
as it depends on predictive uncertainty (Lakshminarayanan,
Pritzel, and Blundell 2017). Additionally, due to its prac-
tical applicability in a wide spectrum of regression tasks,
root mean squared error (RMSE) is measured, although it
does not depend on the estimated uncertainty (Lakshmi-
narayanan, Pritzel, and Blundell 2017), but serves as a proxy
and a secondary assessor of the performance. Moreover, to
measure the robustness/generalization of methods to distri-
butional shift, we test the models in out-of-distribution set-
tings, such as the synthetic datasets by (Forrester, Sobester,
and Keane 2008; He, Lakshminarayanan, and Teh 2020).

Performance Results
Qualitative Comparison. Figure 1 shows the perfor-
mance of different methods compared to a Gaussian process
with a neural tangent kernel (NTKGP analytic) as a refer-
ence, on a 1D toy dataset generated from y = xsin(x) + ε

(a) DE (b) AE (c) HDE

(d) RP-param (e) NTKGP-param (f) RAFs

Figure 1: Uncertainty quantification of different methods on
He et al. dataset. Gaussian process with neural tangent ker-
nel (NTKGP analytic) is included as a reference.

(dashed line). The plots demonstrate that DE, HDE, and AE
provide narrow uncertainty bounds in areas where no data
has been observed by the model, which translates to high
confidence in OOD data. On the contrary, NTKGP-param,
RP-param, and RAFs Ensemble bound their uncertainty esti-
mates with wider intervals in areas with no data, accounting
for adequate quantification of epistemic uncertainty, while
also indicating robustness to OOD data. Among these meth-
ods, RAFs Ensemble provides the widest uncertainty which
is reasonable considering the amount of data that is available
to the methods over each area. Moreover, this observation
is quantitatively validated as RAFs Ensemble achieves the
lowest NLL compared to the other methods (see Table 1).

Overall Performance. We evaluate the overall perfor-
mance of all methods in terms of both NLL and RMSE. The
outcomes of comparing RAFs Ensemble with five baseline
methods on twenty synthetic and five real-world datasets are
outlined in Table 1 and Table 2. The results illustrate that
our approach outperforms the competitors in most scenar-
ios. Furthermore, Table 3 summarizes the obtained results
in terms of ranking, in which the methods are ranked based
on their performance for a particular dataset. The left integer
corresponds to NLL, while the right one points to RMSE,
and the bold values indicate the best-performing method.

Discussion. The obtained results in this section illustrate
that DE has good uncertainty estimates with respect to NLL
for the real-world datasets, and it takes the first place for
Naval propulsion and Parkinson’s datasets. For the rest of the
data categories, when compared to the other methods, DE
fails to provide strong performance, usually scoring a very
low NLL rank. Therefore, this indicates that Deep Ensemble
might have difficulty quantifying epistemic uncertainty in
general as displayed by the experiments in this paper, but
seemingly manages to capture aleatoric uncertainty well.

Unlike DE, the HDE provides outwardly reliable esti-



NLL
DE HDE AE NTKGP-p. RP-p. RAFs

He et al. 1D >100 ± 0.18 71.31 ± 0.51 38.75 ± 0.12 4.48 ± 0.18 13.05 ± 0.43 2.21 ± 0.18
Forrester et al. 1D >100 ± 0.53 >100 ± 0.51 50.82 ± 0.52 >100 ± 0.50 13.7 ± 0.58 0.64 ± 0.74
Schaffer N.4 2D 0.29 ± 0.01 -0.71 ± 0.01 2.15 ± 0.01 -0.55 ± 0.01 -0.36 ± 0.01 -0.79 ± 0.01
Double pendulum 2D 2.95 ± 0.05 2.18 ± 0.84 -0.36 ± 0.05 -0.58 ± 0.05 -0.47 ± 0.05 -0.49 ± 0.04
Rastrigin 3D 29.24 ± 1.30 3.09 ± 1.15 35.94 ± 0.74 28.38 ± 0.64 4.35 ± 1.24 3.44 ± 1.05
Ishigami 3D 6.01 ± 0.08 >100 ± 0.08 8.73 ± 0.08 1.53 ± 0.08 -0.01 ± 0.08 0.06 ± 0.07
Environmental 4D 64.72 ± 0.23 7.84 ± 0.13 1.65 ± 0.20 4.5 ± 0.27 3.94 ± 0.21 0.81 ± 0.17
Griewank 4D 28.29 ± 2.43 5.50 ± 1.62 4.64 ± 3.06 10.21 ± 2.37 4.29 ± 2.93 4.79 ± 2.40
Roos & Arnold 5D -2.02 ± 0.01 -2.21 ± 0.00 -1.89 ± 0.01 -1.71 ± 0.01 -1.70 ± 0.01 -2.1 ± 0.01
Friedman 5D 96.94 ± 0.41 >100 ± 0.51 15.04 ± 0.50 41.69 ± 0.39 4.22 ± 0.44 1.78 ± 0.39
Planar arm torque 6D 9.58 ± 0.07 4.11 ± 0.08 3.07 ± 0.05 -0.32 ± 0.08 -0.05 ± 0.07 -0.16 ± 0.06
Sum of powers 6D >100 ± 0.41 >100 ± 0.62 55.03 ± 0.43 >100 ± 0.41 41.59 ± 0.40 35.22 ± 0.35
Ackley 7D 7.11 ± 0.23 1.38 ± 0.16 2.50 ± 0.36 3.11 ± 0.27 2.09 ± 0.26 1.16 ± 0.08
Piston simulation 7D -2.19 ± 0.00 14.06 ± 0.00 3.50 ± 2.40 2.87 ± 2.93 2.67 ± 0.42 3.63 ± 0.57
Robot arm 8D 10.71 ± 0.03 6.87 ± 0.01 7.11 ± 0.01 0.27 ± 0.03 0.80 ± 0.06 0.25 ± 0.02
Borehole 8D >100 ± 1.01 >100 ± 1.01 4.89 ± 1.87 5.48 ± 3.54 4.06 ± 1.20 4.36 ± 1.26
Styblinski-Tang 9D >100 ± 3.05 >100 ± 0.00 40.80 ± 5.33 >100 ± 3.03 15.82 ± 6.31 25.23 ± 4.12
PUMA560 9D 6.59 ± 0.15 1.62 ± 0.14 4.24 ± 0.14 5.93 ± 0.08 6.40 ± 0.14 2.14 ± 0.13
Adapted Welch 10D >100 ± 0.81 >100 ± 0.75 >100 ± 0.55 >100 ± 0.75 >100 ± 0.57 78.53 ± 0.67
Wing weight 10D >100 ± 0.00 27.31 ± 4.37 5.46 ± 4.36 67.30 ± 0.53 5.54 ± 4.15 5.39 ± 1.69
Boston housing 74.54 ± 1.06 >100 ± 1.04 71.53 ± 1.06 70.82 ± 1.06 >100 ± 1.10 40.67 ± 1.00
Abalone >100 ± 0.10 >100 ± 0.10 47.67 ± 0.10 >100 ± 0.10 28.37 ± 0.10 28.90 ± 0.10
Naval propulsion -2.27 ± 0.00 >100 ± 0.00 3.92 ± 0.10 2.28 ± 1.51 2.16 ± 0.16 1.91 ± 0.07
Forest fire 15.71 ± 0.05 3.14 ± 0.02 2.66 ± 0.69 3.10 ± 1.11 4.68 ± 0.14 2.15 ± 0.28
Parkinson’s 26.74 ± 0.02 >100 ± 0.10 >100 ± 0.16 >100 ± 0.03 >100 ± 0.16 45.69 ± 0.16

Table 1: Performance of methods on all datasets w.r.t. NLL, including 95% confidence intervals. The best scores are in bold.

mates for datasets with many local minima, despite its unim-
pressive overall results when compared to the other methods.
However, both DE and HDE can produce uncertainty bounds
that are unreasonably narrow in areas with unobserved data,
as shown in Figure 1 and noted by (Heiss et al. 2021).

Nonetheless, AE demonstrates good performance in the
dataset categories that exhibit higher epistemic uncertainty
such as the physical models. This is due to the fact that AE
is designed for capturing model uncertainty, while aleatoric
uncertainty is assumed to be constant. Accordingly, AE
achieves inferior performance on the real-world datasets, as
those generally have more data uncertainty appropriated.

On the other hand, NTKGP-param achieves its finest per-
formance for datasets in the physical model category, which
is normally associated with substantial model uncertainty.
A credible rationale to explain this insight is the fact that
NTKGP-param tends to be more conservative than Deep En-
semble. However, it is generally unclear in which situations
this is beneficial since the ensemble members of NTKGP-
param will always be misspecified in practice according to
(He, Lakshminarayanan, and Teh 2020).

Furthermore, RP-param manages to rank comparatively
high for real-world datasets as well as trigonometric data,
that contain vast amounts of aleatoric and epistemic uncer-
tainty, respectively, indicating that it does not quantify ei-
ther type of uncertainty better than the other. This obser-
vation serves as a demonstration that RP-param generalizes
well for different types of datasets that exhibit broad char-
acteristics. However, this technique fails to deliver low NLL
scores on some occasions, which might be attributed to the

fact that RP-param is based on bootstrapping. While boot-
strapping can be a successful strategy for inducing diver-
sity, it can sometimes harm the performance when the base-
learners have multiple local optima, as is a common case
with NNs (Lakshminarayanan, Pritzel, and Blundell 2017).

Nevertheless, RAFs Ensemble outperforms RP-param,
and every other method in the comparisons, for 13 out of
25 datasets. In terms of NLL, our approach does not rank
below the second place for any data, which is consistent
with the strong results from Table 1. Meanwhile, the RMSE
scores of this method are altogether satisfactory, although
not as prominent compared to the NLL scores. In agreement
with the overall outstanding results, RAFs Ensemble holds
the highest NLL rank for all data from MLM and T cate-
gories, which can be contemplated as a concluding state-
ment regarding its capabilities to estimate epistemic uncer-
tainty and challenging multimodality. Among all categories,
the real-world datasets are least favored by RAFs Ensem-
ble, primarily due to their high level of aleatoric uncertainty.
This indicates that RAFs Ensemble captures model uncer-
tainty slightly better than aleatoric uncertainty. Nonetheless,
the empirical superiority of this technique is due to the ex-
haustively exploited added source of randomness via ran-
dom activation functions, combined with method simplic-
ity and Bayesian behavior, resulted from the anchored loss
(Equation 2). This successful combination leads to greatly
improved diversity among ensemble members, which can be
further confirmed by a direct comparison between RAFs En-
semble and AE. Note that even though RAFs Ensemble does
not provide as prominent results with respect to RMSE in the



RMSE
DE HDE AE NTKGP-p. RP-p. RAFs

He et al. 1D 3.71 ± 0.18 5.70 ± 0.51 3.15 ± 0.12 3.64 ± 0.18 5.24 ± 0.43 3.80 ± 0.18
Forrester et al. 1D 5.00 ± 0.53 4.12 ± 0.51 4.09 ± 0.52 6.05 ± 0.50 5.70 ± 0.58 2.8 ± 0.74
Schaffer N.4 2D 0.23 ± 0.01 0.34 ± 0.01 0.30 ± 0.01 0.24 ± 0.01 0.31 ± 0.01 0.27 ± 0.01
Double pendulum 2D 0.46 ± 0.05 2.22 ± 0.84 0.71 ± 0.05 0.51 ± 0.05 0.74 ± 0.05 0.58 ± 0.04
Rastrigin 3D 18.41 ± 1.30 10.96 ± 1.15 25.58 ± 0.74 18.10 ± 0.64 12.87 ± 1.24 14.85 ± 1.05
Ishigami 3D 0.69 ± 0.08 1.05 ± 0.08 0.88 ± 0.08 0.69 ± 0.08 0.58 ± 0.08 0.57 ± 0.07
Environmental 4D 2.04 ± 0.23 2.51 ± 0.13 1.83 ± 0.20 2.34 ± 0.27 2.03 ± 0.21 1.68 ± 0.17
Griewank 4D 83.97 ± 2.43 45.68 ± 1.62 42.12 ± 3.06 78.47 ± 2.37 38.62 ± 2.93 78.79 ± 2.40
Roos & Arnold 5D 0.07 ± 0.01 0.01 ± 0.00 0.07 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.08 ± 0.01
Friedman 5D 3.17 ± 0.41 3.63 ± 0.51 2.95 ± 0.50 3.39 ± 0.39 2.74 ± 0.44 3.1 ± 0.39
Planar arm torque 6D 0.65 ± 0.07 0.62 ± 0.08 0.71 ± 0.05 0.71 ± 0.08 1.08 ± 0.07 0.74 ± 0.06
Sum of powers 6D 22.81 ± 0.41 21.19 ± 0.62 21.87 ± 0.43 22.79 ± 0.41 22.22 ± 0.40 22.24 ± 0.35
Ackley 7D 8.92 ± 0.23 2.43 ± 0.16 7.28 ± 0.36 8.58 ± 0.27 4.03 ± 0.26 1.33 ± 0.08
Piston simulation 7D 0.02 ± 0.00 0.04 ± 0.00 29.1 ± 2.40 >100 ± 2.93 5.78 ± 0.42 7.40 ± 0.57
Robot arm 8D 0.92 ± 0.03 0.80 ± 0.01 0.88 ± 0.01 0.93 ± 0.03 1.09 ± 0.06 0.83 ± 0.02
Borehole 8D 32.11 ± 1.01 32.12 ± 1.01 48.75 ± 1.87 >100 ± 3.54 38.60 ± 1.20 41.35 ± 1.26
Styblinski-Tang 9D >100 ± 3.05 >100 ± 0.00 >100 ± 5.33 >100 ± 3.03 >100 ± 6.31 >100 ± 4.12
PUMA560 9D 3.93 ± 0.15 3.23 ± 0.14 3.40 ± 0.14 3.93 ± 0.08 3.24 ± 0.14 3.4 ± 0.13
Adapted Welch 10D 99.51 ± 0.81 99.4 ± 0.75 >100 ± 0.55 99.79 ± 0.75 >100 ± 0.57 100.00 ± 0.67
Wing weight 10D >100 ± 0.00 58.16 ± 4.37 63.1 ± 4.36 >100 ± 0.53 63.35 ± 4.15 >100 ± 1.69
Boston housing 11.28 ± 1.06 11.36 ± 1.04 11.42 ± 1.06 11.28 ± 1.06 11.56 ± 1.10 11.31 ± 1.00
Abalone 2.06 ± 0.10 2.09 ± 0.10 2.08 ± 0.10 2.05 ± 0.10 2.09 ± 0.10 2.08 ± 0.10
Naval propulsion 0.02 ± 0.00 0.02 ± 0.00 38.86 ± 0.60 62.61 ± 1.51 9.40 ± 0.16 3.45 ± 0.08
Forest fire 1.97 ± 0.05 1.87 ± 0.02 6.43 ± 0.69 10.43 ± 1.11 2.32 ± 0.14 3.32 ± 0.28
Parkinson’s 12.17 ± 0.02 12.40 ± 0.10 12.49 ± 0.16 11.97 ± 0.03 12.60 ± 0.16 12.78 ± 0.16

Table 2: Performance of methods on all datasets w.r.t. RMSE, including 95% confidence intervals. The best scores are in bold.

DE HDE AE NTKGP-p. RP-p. RAFs
He et al. 1D 6,2 5,3 4,1 2,2 3,3 1,2
Forrester et al. 1D 4,2 5,2 3,2 6,2 2,2 1,1
Schaffer N.4 2D 5,1 2,4 6,3 3,1 4,3 1,2
Double pendulum 2D 3,1 3,3 2,2 1,1 1,2 1,1
Rastrigin 3D 2,2 1,1 3,3 2,2 1,1 1,1
Ishigami 3D 3,1 5,3 4,2 2,1 1,1 1,1
Environmental 4D 6,1 5,2 2,1 4,1 3,1 1,1
Griewank 4D 3,3 1,1 1,1 2,2 1,1 1,2
Roos & Arnold 5D 3,1 1,1 4,3 5,1 5,1 2,2
Friedman 5D 5,1 6,1 3,1 4,1 2,1 1,1
Planar arm torque 6D 5,1 4,1 3,1 1,1 2,2 2,1
Sum of powers 6D 5,1 6,1 3,1 4,1 2,1 1,1
Ackley 7D 4,5 1,2 2,4 3,5 2,3 1,1
Piston simulation 7D 1,1 3,2 2,5 2,6 2,3 2,4
Robot arm 8D 5,3 3,1 4,2 1,3 2,4 1,1
Borehole 8D 2,1 3,1 1,4 1,5 1,2 1,3
Styblinski-Tang 9D 3,2 5,5 2,1 4,3 1,1 1,4
PUMA560 9D 5,2 1,1 3,1 4,2 4,1 2,1
Adapted Welch 10D 6,1 2,1 4,3 5,1 3,2 1,1
Wing weight 10D 4,4 2,1 1,1 3,3 1,1 1,2
Boston housing 3,1 5,1 2,1 2,1 5,1 1,1
Abalone 5,1 6,1 3,1 4,1 1,1 2,1
Naval propulsion plant 1,1 4,1 3,4 2,5 2,3 2,2
Forest fire 3,2 1,1 1,5 1,6 2,3 1,4
Parkinson’s 1,2 6,3 4,3 5,1 3,3 2,3

Table 3: Rank of the methods corresponding to NLL (left)
and RMSE (right). The best overall score is in bold (ties are
possible in case of an overlap in confidence intervals).

higher dimensional datasets as it does in datasets of lower di-
mensions, it still achieves better or on par results compared
to the state-of-the-art methods. In addition, RAFs Ensem-
ble can be deployed in both complex and straightforward
settings. On a related note, while DE struggles when dealing

with high multimodality and RP-param underperforms when
the dataset has interaction effects (from “others” category),
RAFs excels in both such settings.

Scalability to higher dimensions and larger networks.
To test the scalability of RAFs Ensemble, we compare it
with the strongest baseline, RP-param, on two additional
real-world datasets, i.e., a 65-dimensional data with around
20k samples and a 40-dimensional data with almost 40k
samples. The former is the superconductivity dataset, where
the goal is to predict the critical temperature of supercon-
ductors (Hamidieh 2018). The latter summarizes features
about articles, where the target is the number of shares in so-
cial networks (Fernandes, Vinagre, and Cortez 2015). Both
methods utilize the same neural architecture for their base-
learners, that is two hidden layers of 128 hidden neurons
each, which is more complex than the previous experiments.
The conclusion of these experiments is conclusive in favor
of our approach. RAFs Ensemble scores NLL of 5.49 and
25.89 on the first and second dataset, respectively, while RP-
param scores NLL of over 100 on both datasets.

Confidence vs. Error. We further analyze the relation be-
tween the RMSE and the precision thresholds in order to
examine the confidence of each method in the prediction
task. Figure 2 displays the confidence versus error plots for
one synthetic and one real-world dataset, i.e., Friedman and
Abalone (see the Technical Appendix for more detail). In
this figure, for each precision threshold τ , the RMSE is plot-
ted for examples where the predicted precision σ−2p is larger
than the threshold τ , demonstrating confidence. In gen-



(a) Friedman (synthetic)

(b) Abalone (real-world)

Figure 2: Confidence versus error of estimations.

eral, reliable estimates are expected to have decreasing er-
ror when the confidence is increasing. For Friedman dataset,
it is clear that RAFs Ensemble delivers well-calibrated es-
timates, which is especially in contrast with DE, NTKGP-
param, and HDE (Figure 2a). However, for the Abalone data,
RP-param demonstrates the most reliable behavior, although
RAFs Ensemble meets its performance at the last precision
threshold (Figure 2b). Overall, our approach sustains lower
error over most precision thresholds compared to the major-
ity of the other methods, and this contrast in performance is
emphasized as the predictions get more confident.

Ablation. We study the effect of number of base-learners
in the ensemble on the quality of UQ, which also measures
the sensitivity of the results to the cardinality of the set of
AFs k. We conduct an experiment on two different datasets,
one synthetic (PUMA590) and one real-world (Abalone),
where the results in terms of NLL are represented in Fig-
ure 3. Note that Figure 3b is shown in log-scale for better
visibility. According to the theory, in the limit of infinite
number of ensemble members, the ensemble error converges
to zero (Hansen and Salamon 1990). However, practically
speaking, five NNs in the ensemble provide optimal results
regarding the trade-off between empirical performance and
computational time (Lakshminarayanan, Pritzel, and Blun-
dell 2017), which is also the case in our experiments. This
is further confirmed by the plot in Figure 3a. In addition, for
the PUMA590 dataset, it seems that RAFs Ensemble’s per-
formance is not impacted negatively by the number of NNs
in the ensemble. Moreover, an interesting observation is the
steep through for seven NNs (equal to k) in Figure 3b, which
is an indication that there might be a correlation between k
and the performance in some cases. A plausible reason for
this is the fact that the additional source of randomness is
utmostly exploited via a different activation function.

(a) PUMA560 (b) Abalone

Figure 3: The effect of number of NNs in the ensemble in
terms of NLL, including the 95% confidence interval.

Figure 4: The effect of
cardinality k on NLL for
Superconductivity data.

To further confirm the
effectiveness of the ran-
dom activation functions,
we evaluate the perfor-
mance of RAFs Ensemble
(of five NNs) in terms of
NLL w.r.t. different cardi-
nalities k of the set of AFs.
The dataset used for this ex-
periment is the supercon-
ductivity data. As the re-
sults in Figure 4 clearly
suggest, by increasing the
cardinality k, NLL has a de-
creasing pattern, which shows that having more random AFs
significantly improves the performance of the ensemble.

Moreover, we combine our approach with RP-param in-
stead of AE to show that RAFs can be methodologically
applied to any ensemble technique. We evaluate the perfor-
mance of this combination on the Parkinson’s dataset, using
the same network architecture for fair comparison. The ob-
tained results demonstrate that applying RAFs to RP-param
leads to reducing the original NLL score of > 100 to 48.66,
which is in line with the results we get when comparing AE
with RAFs Ensemble and is a further proof that the method-
ology indeed increases the performance.

Conclusions
We introduced a novel method, Random Activation Func-
tions Ensemble, for a more robust uncertainty estimation in
approaches based on neural networks, in which, each net-
work in the ensemble is accomodated with a different (ran-
dom) activation function to increase the diversity of the en-
semble. The empirical study illustrates that our approach
achieves excellent results in quantifying both epistemic and
aleatoric uncertainty compared to five state-of-the-art en-
semble uncertainty quantification methods on a series of re-
gression tasks across 25 datasets, which proved there does
not have to be a trade-off between simplicity and strong em-
pirical performance. Furthermore, the properties of datasets
such as dimensionality or complexity of modeling dynamics
do not appear to affect RAFs Ensemble negatively, which
also demonstrates robustness in out-of-distribution settings.
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Appendix
Synthetic datasets

The number of training data points and testing data points
for each dataset is shown in Table 4.

Physical models
Both the training data and testing data of every dataset in
this dataset category are sampled from realistic ranges, so
that all values are also possible in a real world setting.

Double pendulum 2D A double pendulum, is a dynami-
cal system, which consists of a pendulum with another pen-
dulum attached to its end (Levien and Tan 1993). For the
purposes of this work, the length of both pendulum ropes
L1 and L2 is kept constant L1 = L2 = 1 and the response
variable yi that is being modeled is the horizontal position
of the lower pendulum mass given θ1 and θ2:

y = L1 sin(θ1) + L2 sin(θ2) + ε (3)

For generating the training dataset, the inputs θ1 and θ2
range over [−2π3 , π6 ], while for testing both inputs are sam-
pled from [−π, π]. Additionally, ε ∼ N (0, 0.12).

Environmental Model 4D The Environmental Model
function is a pollutant diffusion problem that models a pol-
lutant spill at two locations caused by a chemical accident
(Bliznyuk et al. 2008):

y =
√

4π · C(X) + ε, (4)

where ε ∼ N (0, 0.12), the response variable y is the scaled
the concentration of the pollutant C(X) at the space-time
vector (s, t):

C(X) =
M√
4πDt

exp

(
−s2

4Dt

)
+ C ′(X) (5)

C ′(X) =
M√

4πD(t− τ )
exp

(
−(s−L)2

4D(t− τ )

)
I(τ < t)

(6)
whereM is the mass of the pollutant spill,D is the diffusion
rate in the channel, L is the location of the second spill, τ is
the time of the second spill and I is the indicator function.
For generating this dataset, s and t are fixed: s = 1 and
t = 40.1. The ranges of the input values for training are as
follows: M ∈ [7, 13],D ∈ [0.02, 0.12],L ∈ [0.01, 3], τ ∈
[30.01, 30.295]. For testing, those ranges are wider: M ∈
[5, 15],D ∈ [0, 0.15],L ∈ [0.01, 3.2], τ ∈ [23.71, 31].

Planar arm torque 6D Planar arm torque dataset approx-
imates the first motor’s torque in the inverse dynamics of a
Planar 2D Arm (Cully et al. 2018):

y1 = (M(q)q̈ + C(q, q̇)q̇)T + ε, (7)

where ε ∼ N (0, 0.12), q is a 2-dimensional vector denot-
ing the articular position, q̇ is a 2-dimensional vector denot-
ing the articular velocity, q̈ is a 2-dimensional vector denot-
ing the articular acceleration. M(q) is the mass matrix and
C(q, q̇) is the matrix of Coriolis and centrifugal forces:

M(q) =

[
0.2083 + 0.1250 cos(q2) m(q2)

m(q2) 0.0417

]
(8)

m(q2) = 0.0417 + 0.0625 cos(q2) (9)

C(q, q̇) =

[
−a sin(q2)q̇2 a sin(q2)(q̇1 + q̇2)
a sin(q2)q̇1 0

]
, (10)

where a = 0.0625. The features span though the following
intervals for training: q1, q2 ∈ [−π2 ,

π
2 ], q̇1, q̇2 ∈ [−π, π],

q̈1, q̈2 ∈ [−π, π]. For generating the testing feature values
q1, q2 ∈ [−π, π], q̇1, q̇2 ∈ [−2π, 2π], q̈1, q̈2 ∈ [−2π, 2π]
are used.

Piston simulation 7D The Piston Simulation function
models the circular motion of a piston within a cylinder. The
piston’s linear motion is transformed into circular motion by
connecting a linear rod to a disk. Thus, the faster the piston
moves inside the cylinder, the quicker the disk rotation and
thus, the faster the engine runs. The response variable y is
the cycle time in seconds (Ben-Ari and Steinberg 2007; Fre-
itas 1999), which is affected by the features via a chain of
nonlinear functions:

y = 2π

√
M

k + S2 P 0V 0

T 0

T a

V 2

+ ε,where (11)

V =
S

2k

(√
A2 + 4k

P 0V 0

T 0
T a −A

)
(12)

A = P 0qS + 19.62M − kV 0

S
. (13)

In the above equations M is the piston weight (kg), S is
the piston surface area (m2), V 0 is the initial gas volume
(m3), k is the spring coefficient (N/m), P 0 is the atmo-
spheric pressure (N/m2), T a is the ambient temperature (K),
T 0 is the filling gas temperature (K) and the error term
ε ∼ N (0, 0.12). The training features are from the follow-
ing intervals: M ∈ [30, 60], S ∈ [0.005, 0.020] , V 0 ∈
[0.002, 0.010], k ∈ [1000, 5000], P 0 ∈ [90000, 110000],
T a ∈ [290, 296] , T 0 ∈ [340, 360]. Comparably, the test-
ing input values are: M ∈ [0, 90], S ∈ [0.005, 0.03] ,
V 0 ∈ [0, 0.015], k ∈ [10, 6000], P 0 ∈ [80000, 120000],
T a ∈ [285, 300] , T 0 ∈ [300, 400].

Robot arm 8D The Robot Arm function models the po-
sition of a four-segment robot arm and the response is the
distance from the end of the robot arm to the origin (An and
Owen 2001):

y =
√
u2 + v2 + ε,where (14)

u =

4∑
i=1

Li cos

 i∑
j=1

θj

 (15)

v =

4∑
i=1

Li sin

 i∑
j=1

θj

 . (16)



The shoulder of the robot arm is fixed at the origin, however,
each of the four segments is positioned at angle θj and has
length Li. Each input variable for the training set is gener-
ated from θj ∈ [0, π] and Li ∈ [0, 0.5], while the test input
variables θj andLi range over [0, 2π] and [0, 1] respectively.
Finally, ε ∼ N (0, 0.12).

Borehole 8D The Borehole function models water flow
through a borehole and thus, the response variable is the wa-
ter flow rate (m3/yr):

y =
2πT u(Hu −H l)

ln(r/rw)
(

1 + 2LTu

ln(r/rw)r2
wKw

+ Tu

T l

) + ε, (17)

where ε ∼ N (0, 0.12), rw is the radius of a borehole (m),
r is the radius of influence (m), T u and T l are the trans-
missivities of respectively upper and lower aquifers (m2/yr),
Hu and H l are the potentiometric heads of respectively
upper and lower aquifers (m), L is the length of a bore-
hole (m) and Kw is the hydraulic conductivity of borehole
(m/yr) (An and Owen 2001). The features for training are
sampled from rw ∈ [0.05, 0.15], r ∈ [100, 50000], T u ∈
[63070, 115600], T l ∈ [63.1, 116], Hu ∈ [990, 1110],
H l ∈ [700, 820], L ∈ [1120, 1680], Kw ∈ [9855, 12045],
while the testing input - rw ∈ [0.01, 0.2], r ∈ [90, 50010],
T u ∈ [63020, 115650], T l ∈ [60, 120], Hu ∈ [950, 1150],
H l ∈ [650, 900], L ∈ [1100, 1700],Kw ∈ [9800, 12100].

PUMA560 9D PUMA560 dataset is generated from a re-
alistic simulation of the dynamics of a Puma 560 robot arm
(Ghahramani 1996). The task is to predict the articular ac-
celeration of one of the links of the robot arm:

y1 = A(q)−1(τ − n(q, q̇)− g(q)) + ε, (18)
where q and q̇ are 3-dimensional vectors denoting respec-
tively the angular positions and angular velocities of each
of the three links, τ is a 3-dimensional vector represent-
ing the torques at the three joints, n(q, q̇) is the Coriolis
and centrifugal effects, A(q) is the inertia matrix, g is the
gravity and ε ∼ N (0, 0.42) is the Gaussian noise. The test
and train features are sampled from q1, q2, q3 ∈ β[−π2 ,

π
2 ],

q̇1, q̇2, q̇3 ∈ β[−π2 ,
π
2 ] and τ 1, τ 2, τ 3 ∈ β[−12 ,

1
2 ] with fixed

β = 1.2 to control the nonlinearity of the dataset. Therefore,
this dataset can be considered as highly nonlinear and noisy.

Wing weight 10D The Wing Weight function models a
light aircraft wing, where the response is the wing’s weight
(Forrester, Sobester, and Keane 2008):

y = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006y′ (19)

y′ = λ0.04

(
100tc

cos(Λ)

)−0.3
(NzW dg)

0.49 + y′′ (20)

y′′ = SwW p + ε, (21)

where Sw is the wing area (ft2), W fw is the weight of fuel
in the wing (lb), A is the aspect ratio, Λ is the quarter-
chord sweep (degrees), q is the dynamic pressure at cruise

(lb/ft2), λ is the taper ratio, tc is the aerofoil thickness to
chord ratio,Nz is the ultimate load factor,W dg is the flight
design gross weight (lb), W p is the paint weight (lb/ft2)
and ε ∼ N (0, 0.12). The ranges of the features for train-
ing for each value are Sw ∈ [150, 200], W fw ∈ [220, 300],
A ∈ [6, 10], Λ ∈ [−10, 10], q ∈ [16, 45], λ ∈ [0.5, 1],
tc ∈ [0.08, 0.18], Nz ∈ [2.5, 6], W dg ∈ [1700, 2500]
and W p ∈ [0.025, 0.08], whereas for testing the intervals
contain values outside the usual ranges - Sw ∈ [100, 250],
W fw ∈ [200, 320],A ∈ [0, 15], Λ ∈ [−20, 20], q ∈ [0, 60],
λ ∈ [0, 1.5], tc ∈ [0.05, 0.25], Nz ∈ [0.5, 8], W dg ∈
[1000, 3000] andW p ∈ [0, 0.1].

Many local minima functions
The many local minima functions are extremely hard to be
approximated due to their high nonlinearity and complexity.

Schaffer N.4 2D Schaffer N.4 function, proposed in
(Mishra 2006):

y = 0.5 +
cos2(sin(|x2

1 − x2
2))− 0.5

(1 + 0.001(x2
1 + x2

2))2
+ ε, (22)

where ε is the added noise and ε ∼ N (0, 0.12). The train-
ing inputs x1 and x2 are generated from [−2, 2], while for
testing x1 and x2 range over [−2.5, 2.5].

Rastrigin 3D The Rastrigin function is highly multi-
modal, but locations of the minima are regularly distributed.
Rastrigin proposed the function in two dimensions (Rastri-
gin 1974), which was later generalized to d dimensions by
Rudolph (Rudolph 1990). However, for the purpose of this
work, the function is used in 3 dimensions (d = 3):

y = 10d+

d∑
i=1

(x2
i − 10 cos(2πxi)) + ε, (23)

where ε ∼ N (0, 0.12). Each training features x is sampled
from [−5.12, 5.12], whereas the testing features are gener-
ated from [−5.5, 5.5].

Griewank 4D The local minima of the Griewank function
are widespread and regularly distributed. It is presented in d
dimensions (Griewank 1981):

y =

d∑
i=1

x2
i

4000
−

d∏
i=1

cos

(
xi√
i

)
+ 1 + ε, (24)

where ε ∼ N (0, 0.12) is homoscedastic noise. The di-
menionality of this function chosen for the aims of this
work is d = 4. The training features x are generated
from [−500, 500], while the testing feature vectors from
[−600, 600].

Ackley 7D Ackley function is introduced as a d-
dimensional function (Ackley 1987):

y = −a exp

−b
√√√√1

d

d∑
i=1

x2
i

− y′ (25)



(a) He et al. (b) Forrester et al.

Figure 5: Training data points for the two 1D generating
functions.

y′ = exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1) + ε, (26)

where a = 20, b = 0.2, c = 2π and ε ∼ N (0, 0.12). For
the purposes of this work, d = 7, x for training are sam-
pled from [−30, 30] and x for testing are generated from
[−32.768, 32.768], as the latter is the usual test area (Molga
and Smutnicki 2005).

Trigonometric
He et al. 1D The generating function:

y = x sin(x) + ε, (27)

where ε ∼ N (0, 0.12), is proposed by He et al. (He, Laksh-
minarayanan, and Teh 2020). In order to detail uncertainty
on out-of-distribution test data, the training points are par-
titioned into two equal-sized clusters (Figure 5a). The clus-
ters, that configure the training data x, are generated from
[−2,−0.67] and [0.67, 2], while the testing points x range
in [−6, 6].

Forrester et al. 1D Forrester et al. function is a simple
one-dimensional multimodal function (Forrester, Sobester,
and Keane 2008):

y = (6x− 2)2 sin(12x− 4) + ε, (28)
where ε ∼ N (0, 0.12). Similarly to He et al. dataset, training
vector x is split into two clusters to detail uncertainty on
OoD test data (Figure 5b). Thus, x ranges over [0.2, 0.4] and
[0.65, 0.85], while testing x is sampled from [0, 1].

Ishigami 3D Ishigami function, introduced in (Ishigami
and Homma 1990), shows strong non-linearity and non-
monotonicity as well as characteristic dependence on x3
(Sobol and Levitan 1999):

y = sin(x1) + a sin2(x2) + bx4
3 sin(x1) + ε, (29)

where a = 7 and b = 0.1, following (Crestaux, Le Maı̂tre,
and Martinez 2009). Also, ε ∼ N (0, 0.12). The training
values of x1,x2,x3 are sampled from [−π2 ,

π
2 ]. Similarly,

x1,x2,x3 for testing are sampled [− 2π
3 ,

2π
3 ] respectively.

Friedman 5D Friedman et al. have proposed the follow-
ing five-dimensional function (Friedman 1991; Friedman,
Grosse, and Stuetzle 1983):

y = 10 sin(πx1x2)+20(x3−0.5)2+10x4+5x5+ε, (30)

where ε ∼ N (0, 0.12). The training data x1,x2,x3,x4

and x5 are sampled from [0, 0.5], while the testing data
x1,x2,x3,x4 and x5 is generated from [0, 1].

Others
Roos & Arnold 5D The Roos & Arnold function, pro-
posed in (Roos and Arnold 1963), is formed from the prod-
ucts of one-dimensional functions:

y =

d∏
i=1

|4xi − 2|+ ε, (31)

where ε ∼ N (0, 0.12) and d = 5. It is described by
Kucherenko et al. as a function with dominant high-
order interaction terms and a high effective dimension
(Kucherenko et al. 2011). x for training and x for testing
are sampled respectively from [0, 0.8] and [0, 1].

Sum of powers 6D This bowl-shaped D-dimensional
function, introduced in (Molga and Smutnicki 2005), rep-
resents a sum of different powers:

y =

d∏
i=1

|xi|i+1 + ε, (32)

where ε ∼ N (0, 0.12) and d = 6. The training data xi
ranges over [−0.75, 0.75], while the testing data xi from
[−1, 1].

Styblinski-Tang 9D Styblinski-Tang function is proposed
as a function in d dimensions (Yi, Ahn, and Ji 2020):

y =
1

2

d∑
i=1

(x4
i − 16x2

i + 5xi) + ε, (33)

where ε ∼ N (0, 0.12) and d = 9. The testing xi and
training xi feature vectors are sampled from the intervals
[−5, 5] and [−6, 6] respectively.

Adapted Welch et al. 10D The original function, pro-
posed by Welch et al. (Welch et al. 1992), contains 20 di-
mensions such that some input variables have a very high
effect on the output, compared to others. This function is
considered challenging, because of its interactions and non-
linear effects. To fit the needs of this work, the Welch et al.
function is adapted and its new version has 10 dimension,
while still preserving its characteristics:

y =
5x10

1.001 + x1
+ 5(x4 − x2)2 + x5 + 40x3

9 + y′ (34)



y′ = −5x1 + 0.08x3 + 0.25x2
6 + y′′ (35)

y′′ = 0.03x7 − 0.09x8 + ε, (36)

where ε ∼ N (0, 0.12). The ranges of training features
x1,x2,x3,x4,x5,x6,x7,x8,x9 and x10 are [−0.5, 0.5].
The testing features x1,x2,x3,x4,x5,x6,x7,x8,x9 and
x10 and [−1, 1].

Real-world datasets
The number of training data points and testing data points
for each dataset is shown in Table 4.

Boston housing
The goal of the Boston housing dataset is to predict the
price of a house given its number of rooms and other
context factors. However, in this paper, the number of
rooms is the only considered independent variable and
context factors, such as house location and crime rate by
town, are disregarded.

Abalone shells
The Abalone dataset contains data regarding abalone shells
and the regression task is to predict the age of a shell,
determined by the number of rings, given several physical
measurements (Nash et al. 1994). The features used in this
study are: length (denoting the longest shell measurement
in mm), diameter in mm, height (with meat in shell in mm),
whole weight (whole abalone in grams) and sucked weight
(meat weight in grams).

Naval propulsion plant
The naval propulsion plant dataset has been generated from
a sophisticated simulator of a Gas Turbine (GT) (Coraddu
et al. 2014). The task is to predict the GT propulsion plant’s
decay state coefficient. Originally, the features are given in a
16-dimensional feature vector containing the GT measures
at steady state of the physical asset, but in this work only
GT shaft torque (kN/m), GT rate of revolutions (rpm), high
pressure turbine exit temperature (C) and GT exhaust gas
pressure (bar), are being used as features.

Forest fire
This dataset concerns forest fire data from the Mon-
tesinho natural park of Portugal (Cortez and de Jesus
Raimundo Morais 2007). The aim of this dataset is to
predict the burnt area given Fine Fuel Moisture Cod
(FFMC) index, Duff Moisture Code (DMC) index, Drought
Code (DC) index, Initial Spread (ISI) index, temperature in
Celsius degrees and relative humidity (in percentage). The
full set of attributes of this data set includes also spatial
coordinates within the park, day and month, wind and
speed, but those are discarded as their addition provides
too detailed context information contradicting this study’s
goals. Additionally, the dependent variable was first trans-
formed with a ln(x + 1) function, just like in (Cortez and

Table 4: Number of training data points and testing data
points for each dataset.

Training Testing
He et al. 1D 20 50
Forrester et al. 1D 20 50
Schaffer N.4 2D 1000 2500
Double pendulum 2D 1000 2500
Rastrigin 3D 200 500
Ishigami 3D 2000 5000
Environmental 4D 200 500
Griewank 4D 200 500
Roos & Arnold 5D 200 500
Friedman 5D 200 500
Planar arm torque 6D 200 500
Sum of powers 6D 200 500
Ackley 7D 400 1000
Piston simulation 7D 200 500
Robot arm 8D 200 500
Borehole 8D 2000 5000
Styblinski-Tang 9D 400 1000
PUMA560 9D 3693 4499
Adapted Welch 10D 200 500
Wing weight 10D 2000 5000
Boston housing 354 152
Abalone 1880 2297
Naval propulsion plant 5370 6564
Forest fire 200 317
Parkinson’s 2643 3232

de Jesus Raimundo Morais 2007).

Parkinson’s disease
Parkinson’s disease dataset is composed of a range of
biomedical voice measurements from people with Parkin-
son’s disease (PD) (Little et al. 2007). In total there are 23
features, but only five are being used: NHR and HNR, which
are both measures of ratio of noise to tonal components
in the voice status, DFA, which is a signal fractal scaling
exponent, PPE, denoting three nonlinear measures of funda-
mental frequency variation and RPDE, which is a nonlinear
dynamical complexity measure. Therefore, the goal of this
regression task it to predict the total Unified Parkinson’s
Disease Rating Scale (UPDRS) given the aforementioned
five features.
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