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ABSTRACT

Recommender systems aim to capture interests of users to provide
tailored recommendations. User interests are however often unique
and depend on many unobservable factors including a user’s mood
and the local weather. We take a contextual session-based approach
and propose a sequential framework using factored Markov deci-
sion processes (fMDPs) to detect the user’s goal (the topic) of a ses-
sion. We show that an independence assumption on the attributes
of items leads to a set of independent models that can be optimised
efficiently. Our approach results in interpretable topics that can
be effectively turned into recommendations. Empirical results on
a real world click log from a large e-commerce company exhibit
highly accurate topic prediction rates of about 90%. Translating
our approach into a topic-driven recommender system outperforms
several baseline competitors.

Categories and Subject Descriptors

H.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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MDP; recommender systems; session-based; user intent

1. INTRODUCTION

Recommender systems are designed to satisfy user’s information
and tangible needs. Guessing the intention of users is not only fun-
damental for the overall user experience but directly linked to rev-
enue. User intent however is driven by unobservable internal (e.g.,
mood, spontaneous inspiration) as well as external (e.g., weather,
location) processes [15]. Capturing user intent is therefore one of
the most challenging problems in many retrieval and recommenda-
tion tasks.

The context of a user is often seen as a proxy for the unobserved
processes [34]. Context may be provided by previously visited
pages [8], viewed items [28], or user profiles [11], and is often
studied together with personalisation [20]. There is a broad range
of applications using contextual variables of users including query
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refinement [27], re-ranking for web search [12], market segmen-
tation [14], and latent variable models for spoken language under-
standing [9]. An alternative approach to capturing the intent of
users are topic models. Topic models [5] can be seen as a gener-
ative probabilistic semantics that have been proposed for retrieval
[31] as well as recommender systems [23, 10]. Topic models for
temporal data however often require stationary data distributions
[4, 1], an assumption too restrictive for highly dynamic scenarios
such as e-commerce.

In this paper, we focus on recommender systems where user
feedback is recorded implicitly, for instance through clicks on re-
sult pages of search engines or on lists of recommended items. The
implicit feedback can be used to train autonomous recommender
systems as the noisy and incomplete batch of user responses pro-
vides a partial labelling of the data. Note that these partial labels do
not suffice for purely supervised approaches as the outcome of rec-
ommending alternative items is undefined. On the other hand, the
task neither fits a purely unsupervised setting as the valuable (par-
tial) ground-truth would be discarded. The abstract problem setting
matches that of reinforcement learning-style approaches where un-
certainty about the value of actions (e.g., recommending an item)
is minimised by trading off exploration and exploitation [28, 18].
Reinforcement learning-based approaches are naturally sequential
models with intrinsic Markov assumptions that allow for capturing
the context of a user by explicitly representing sequences of previ-
ously clicked items [28, 35].

We study factored Markov decision processes (fMDPs) [6] to
detect topics of user sessions. We take a sequential approach and
leverage ideas from [35] and [28] to characterise sessions in terms
of the history of viewed items. However, straight forwardly solving
the resulting fMDPs is infeasible due to exponentially increasing
state spaces. Moreover, the structure of the value function does
not necessarily retain the structure of the process after factorisation
[17]. Hence, many approaches to approximate value functions have
been proposed (e.g., [13, 7]).

Commencing with a standard fMDP on the history of viewed
items, our main contributions are as follows. We show that an in-
dependence assumption on the attributes of items allows to equiva-
lently represent the fMDP by an ensemble of independent fMDPs.
Compared to the initial fMDP, the resulting state space is orders of
magnitude smaller and the ensemble can be optimised efficiently.
In addition, we propose a robust approximation following ideas
from Shani et al. [28] to improve the predictive accuracy in the
presence of data sparsity and large-scale applications. We show
that the learned ()-values can be easily turned into interpretable
topics and recommendations.

In extensive experiments on real world data at enterprise-level
scales provided by Zalando, we observe highly accurate topic de-
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Figure 1: An exemplarily user session of an e-commerce plat-
form. The session is viewed as a (possibly independent) se-
quences of item attributes. The right hand side shows the topic
of the session.

tection rates of about 90%. We show that these topics can effec-
tively be utilised to recommend items of interest with high accu-
racy. Translating our approach into a topic-driven recommender
system outperforms collaborative baseline methods in terms of av-
erage rank.

The remainder of our paper is structured as follows. Section 2
motivates the problem setting and presents a running example that
we will use throughout the paper. We introduce our technical con-
tribution in Section 3 and present empirical results in Section 4.
Section 5 briefly reviews related work on topic detection for se-
quential prediction problems including recommender systems and
Section 6 concludes.

2. PRELIMINARIES

Traditional recommender systems and personalisation approaches
are designed to capture long-term preferences of users. Prominent
examples are movie [3] and job recommendations [21], conference
paper assignments [25], or e-commerce application scenarios [19].
Short-term interests of users provide valuable additional informa-
tion to improve the quality of recommendations. Short-term in-
terests may rise from unexpected events (got an MP3 player, need
headphones) spontaneous moods and ideas (split-up with partner,
need action movie for distraction), or external sources (its freezing
outside, need winter coat).

Figure 1 visualises the scenario using an e-commerce example.
The figure shows an exemplary user session where a user views a
series of garments. The first item is a cheap dark blue shirt fol-
lowed by an expensive black shirt and so on. Instead of addressing
the items and their attributes jointly, we treat their features as in-
dependent. We thus focus on sequences shirt, shirt, shirt, shirt for
the attribute category or dark blue, black, dark brown, black for
colour, respectively. Every such sequence gives us an expectation
about the value of the next item. For instance, the former (constant)
sequence is likely extended by another shirt while the latter gives
rise to a dark coloured item. The attribute price in Figure 1 consti-
tutes a special case as the sequence does not allow to confine the
possible values. Hence, any of the attribute values is possible or, in
other words, the attribute price is not important for the user session.

Given the session in Figure 1, the user’s goal is to find dark
coloured shirts for women of any price level. We call the corre-
sponding distribution of attribute values the fopic of the session.
For the attribute colour, we expect dark colours to be very likely
while light colours are associated with small probabilities close to
zero. Formally, a topic is defined as follows.

DEFINITION 1. Let s be a (possibly ongoing) user session and
{X1,...,Xn} be a set of random variables encoding attributes of

items. The topic of a session s is defined as the distribution of
attributes of the next item given by P(X1 = x1,...,Xn = Tnls).

Once the topic of a session has been detected, a recommender sys-
tem could leverage the estimate to recommend items that lie in the
very topic of the session. Note that the topic of a session is inde-
pendent of other sessions of that user and its lifetime therefore well
suited to adapt to short-term interests of users.

In this paper, we aim to accurately identify the topic of user ses-
sions. We propose factored Markov decision processes (fMDPs)
and define user sessions as sequences of viewed (clicked) items.
The detection of topics is consequentially addressed as a sequential
Markov decision problem. In the next section, we deploy reinforce-
ment learning agents to detect the topic and to translate the estimate
into topic-driven recommendations.

3. MDP-BASED TOPIC DETECTION
3.1 A Standard Approach

We are given a set of items Z described by a set of n random
variables Z = (X4,...,X,), where each X; encodes an attribute
(e.g., colour, category) and takes on values in a discrete and fi-
nite set dom(X};). Every item ¢ € T is therefore defined by a
set of n attributes 5 = (x%,...,2%) with z; € dom(X;) for
1 < j < n. Items are completely characterised by their attributes,
that is, the existence/probability of an item is equivalent to the ex-
istence/probability of its combination of attributes. Assuming for
instance that item 4 has attributes i = (z¢, ..., x%) it holds

Pr(Z =) =Pr(Xy = zi,..., X, = zb). 1)

To avoid cluttering the notation unnecessarily, we omit the super-
script ¢ in the remainder.

An MDP is a four-tuple (S, A, R, P) consisting of the set of
states S, the set of actions A, a reward function R : S x A — R,
and a transition function P : § X A x § — [0, 1] representing
the dynamics of the environment. The goal of MDP is to find the
optimal value function V' : & — R for the state space [29].

In a straight forward sequential MDP for contextual item recom-
mendation, the set of states S is defined as the Kleene closure of
the set of items, thatis S = Z*. The set S thus contains all possible
sequences of items and every element s € S can be identified with
a (possibly unfinished) user session in terms of the viewed items.
An action a € A corresponds to recommending a particular item
from Z, so that we may identify A = Z and consequentially for
every i € Z there exists an a € A such that i = a and vice versa.

The described MDP is trivially infeasible due to the infinite num-
ber of states S. Though in practice not all possible sequences will
actually be observed and an additionally incorporated Markov as-
sumption may further reduce the state space, the model remains
intractable even for small and medium-sized ranges of items.

3.2 Factorisation

We therefore take a different approach and define the MDP over
the set of attributes X7, ..., X, instead of the items Z. Due to
Equation (1), we obtain an equivalent factored MDP (fMDP) where
the set of states is given by the Kleene closure S = (X1, ..., Xn)".
An element s € S; corresponds to a sequence of realisations of
the j-th attribute. Consequentially, the factorisation also impacts
the set of actions which is now given by A = A; X ... x A,
with A; = dom(X;) for all j. We use a; € A; and x; € X
interchangeably in the remainder for convenience.

The reward after taking action a (i.e., recommending the corre-
sponding item ¢) in state s is given by the reward function R(s,a).



Figure 2: Left: Transition model of a joint factored MDP. Ev-
ery attribute value depends on the complete history of all previ-
ously viewed items and their attributes which leads to an infea-
sible model. Right: Sequences of attributes form independent
components. There are no dependencies between attributes.

Positive rewards indicate a click on a recommended item in which
case the recommendation was successful and has been accepted by
the user. The transition function P(s’|s, a) estimates the probabil-
ity of entering state s’ after recommending a in state s. Note that
s serves as a prefix of s’ which is given by s’ = s o 4’, where 4’
is the clicked item by the user and o the operator that appends two
sequences, e.g., ¢ 0 p = pq.

The length of the actual state s is continuously increased by ap-
pending clicked items, exactly one at a time. Thus, instead of ad-
dressing the complex P(s’|s, a), transition probabilities P(i’|s, a)
are often used as an equivalent proxy due to their simpler structure.
The quantlty P(i'|s,a) is the transition probability of clicking on
item 5" when in state s and recommending item a. The transition
probabilities can be represented as a two-layer acyclic graph that
connects the attributes of the previously viewed items in s with the
attributes of the item to be clicked denoted by #’. Theoretically, the
joint transition probability can be efficiently computed by factoris-
ing conditional probabilities, e.g.,

Pr(Xy,..., X, a) = H X |parents()() a),

where parents(X;) denotes the parents of the node X in the un-
derlying graphical model. However, the state space of the fMDP
grows exponentially and renders practical application infeasible as
the exact estimation of the optimal policy is not feasible due to the
curse of dimensionality [13]. Thus, we haven’t won anything yet
in terms of feasibility but successfully rephrased the model over
attribute sequences of the viewed items (Figure 2 left).

3.3 Exploiting Independence

Directly addressing the joint Pr(X71, . .., X,|s, a) requires a state
space that is intractable even for small and medium-sized ware-
houses. We therefore treat the attributes of the items as independent
and approximate the intractable joint by a product of independent
decisions,

Pr(X1, ..., Xnls,a) = H r(Xj|s;,a;).

The idea is to split the fMDP into an ensemble of n disjoint and
independent fMDPs, one for each attribute. The j-th fMDP focuses
on only the j-th attribute and recommends a realisation a; of X
based on the sequence of attributes s; of the previously viewed
items. In Figure 1 for instance, guessing that the next item will
be another shirt can trivially be done in the absence of all other
attributes. A similar argument holds for expecting a dark colour or
a garment for women.

The following theorem shows that an fMDP with independent
chains of random variables admits an equivalent representation as
an ensemble of n independent fMDPs. In order to propagate single
receiving reward through all fMDPs, we consequentially assume
additive factorised rewards R(z,a) = 3>"_, R;(z;, a;).

THEOREM 1. A factored MDP with a set of n independent com-
ponents X = {X1,...,X,} allows an equivalent representation
as an ensemble of n independent fMDPs, one for each component
Xj where 1 < j < n. Let V*(x) be the optimal value for state
X = x in the joint fMDP and V*(x;) be the optimal value for
attribute X; = x; in the j-th fMDP, for all 1 < j < n. It holds

= V().
j=1
PROOF. The standard update rule of value iteration is given by

VNt () = mgx[R(:c, a) +~ Z o P2 |2z, a) VN (2)][29].

Replacing the maximum operator by a softmax gives

V(@) = % log > explpR(z,a)+yp > P(z'lz,a)V" (a')],

where p controls the degree of the approximation and the exact
maximum is recovered for p — oco. We show the claim by induc-
tion for value iteration. For N = 1, we have

Vl(l’j) logZexp pR; (5, a;)]

aj

for the j-th fMDP of the ensemble and the joint is obtained by

Viz) = % log Z exp[pR(z,a)]

1

p log > [> . [D ][ exploR;(xs,a:)}]]
al az an J

The innermost summation can be rewritten as

Z [exp{pR1(x1,a1)} X X exp{pRn(xn,an)}]

an

= exp{pRi(z1,a1)} X -+ x exp{pRn—1(zn-1,an-1)}
% Y exp{pRn(wn, an)}

an

by drawing unrelated terms out of the sum. Continuing for the other
summations gives

“tog [ TT S exploRi (w5, a,))]
P e
% Z log > exp[pR; (5, a;)] = Z Vi(zj),

which shows the claim for N = 1. Now assume that V" (z) =
> V¥ (z;) holds for all . For the joint fMDP, the second
summand in the exponent is simplified by

ZP ", a)VN (') ZP(IHILM)“'
l‘/

ZP xi|z1,a1)
l‘/

V()

P(l‘%lxm an)VN(x/)

“P(ap|an, an)[VY (@) + -+ V()]



where the latter gives rise to the telescope sum
> P@hlon,an)[ S Plablwz,az) [ x -
x/ (L'/
1 2

o [ P an [V V][]

2!
Th

The innermost summation over the new state x,, yields

and since Zx% P(z},|zn,an) = 1 we obtain

V@) 4+ V@) + Y ar P(@h]@n, an) VN (27,).

Drawing out the remaining terms from unrelated summations and
putting things together gives

VN+1(:C) _ %logz [ [ZHexp[p{Rj(ijvaj)

an J

T2 P(ajle;, a)V N @)}

x
J

Reordering terms shows the claim. []

Theorem 1 shows that any high dimensional fMDP with inde-
pendent attributes can be equivalently expressed by several inde-
pendent fMDPs. Exploiting the independence between the attribut-
es, the resulting ensemble consists of an fMDP for every compo-
nent. The resulting state spaces are independent sequences over a
single attribute given by the Kleene closure S; = (dom(X;))* for
all components j. Note that a result by [17] shows that the value
function of fMDPs does in general not retain the structure of the
process. Our theorem proves that a structured value function is
generally obtainable for fMDPs with independent components.

Still, a major drawback of the model is the dependence on the
whole session, that is, every viewed item impacts all subsequent
actions. We therefore take a k-th order Markov assumption to rep-
resent only the k most recently viewed items explicitly. The set of
states of the j-th fMDP is effectively reduced to S; = (dom(X;))*.
The Markov assumption discards long-range dependencies and lead,
together with the previous independence assumption, to an efficient
and compact representation of the ensemble as shown in Figure 2
(right).

3.4 Optimisation

The resulting independent fMDPs can be optimised indepen-
dently and in parallel using standard reinforcement learning tech-
niques such as value iteration. Value iteration learns the state-value
function, V' (s), using the model of the environment; the reward
and transition functions R(s,a) and P(s’|s, a), and converges to
the optimal solution in a discounted finite MDP [29].

The set of states in the j-th fMDP is described by a k-sequence of
realisations of the j-th attribute X; given by s; = (2%, ... }).
The task of the agent is to predict the value of action a; € dom(X;)
in the actual state s;. The transition function P encodes the proba-
bility of observing the subsequent state s; = (@R et
and the reward function R; provides feedback for recommending
a; in s;. Value iteration uses the following update rule for value
determination,

VN (sy) = max [Ry (w5, 05) + 7Y o Psjls5,a,) VY ()]

aj

When the value function converges to the optimal V', state-action
values Q(s;, a;) can be derived

Q(sj,a;) = R(sj,a;) +VZSQP(8§|8@ a;)V*(s}),

where Q(s;, a;) measures the quality of recommending a; in state
s;. Realisations with high @)-values are likely to be observed in the
next page view while small Q-values indicate very unlikely obser-
vations. We use the terms Q(s;, a;) and Q(s;, ;) interchangeably
in the remainder.

Reinforcement learning techniques often perform poorly in large
scale problems due to slow convergence rates. Adapting the model
to data is therefore performed in two steps; offline and online. First,
an initial model is learned by value iteration where transition and
reward functions are adapted to historic data by maximum likeli-
hood. The trained model is then deployed in an online scenario
where it is gradually updated according to the user feedback to
improve estimations. In practice, value iteration can be repeated
periodically (e.g., once in a week) to keep the system up to date.

3.5 Approximation

In practical applications, the available data is often too sparse to
allow for an accurate estimation of the transition probabilities. In
addition, applications on large-scales render keeping the whole set
of transition probabilities infeasible due to memory requirements.
We thus propose an efficient approximation of our model based on
the ideas of Shani et al. [28].

The main idea is to focus on estimating the probability Pr(i’|s)
of item i’ to be clicked next, irrespectively of the action. The
transition Pr(i’|s,a) can be approximatively reconstructed from
Pr(i'|s) as follows. Recall that action a is identical to an item
i € Z. There are three possible outcomes of taking action ¢ = x
when in state s: (i) The user accepts the recommendation ¢ with
probability P(i|s, ), (ii) she rejects ¢ and clicks instead on item
i’ with probability P(i’|s, i), or (iii) the session terminates with
probability P(|s, ). Consider the former two events. The task is
to estimate P(i|s, ) and P(i’|s, ) as a surrogate for the entire tran-
sition function. Note that in the latter, a click on 4’ is independent
of the recommended item <.

The assumption is that the probability of clicking on a recom-
mended item is larger than the probability of choosing the item in
the absence of a recommendation, that is P(i|s,) > P(i|s) [28].
Analogously, the probability of clicking on item ¢ in the absence
of any recommendation is higher than for clicking on ¢ when the
recommended item is actually ¢’ # 4, that is P(i|s,3’) < P(i|s).
By choosing appropriate constants & > 1 and 0 < § < 1, the
desired quantities are approximated by [P(i|s,i) =~ «P(i|s) and
P(ils,i") = BP(ils), subject to P(i|s,i) + 3, P(i'ls,) +
P(0|s, i) = 1, which is obtained by normalisation.

3.6 Topic Extraction

Once approximate or exact Q-values Q(s;,z;) are computed,
they can be used to extract the topic of the session as follows.
The value Q(s;,x;) is proportional to the probability that the user
clicks on an item with attribute =; given the sequence of realisa-
tions s;. In other words, realisations with high Q-values are likely
observed next and thus constitute a part of the topic of s;. For uni-
formly distributed Q-values, e.g., Q(s;,z;) ~ Q(s;,z}) for all
x;,x}, the topic contains the whole domain dom(X;), indicating
that the j-th attribute does not contribute to the topic. As a conse-
quence, any realisation of that attribute may be observed next. In-
termediate (Q-values are ranked according to their difference to the
maximum @Q-value, such that the expected realisations of attribute



J are computed by the min-max normalisation

Q(5j7 xj) - minx; [Q(8j7 :C;)]

ma‘Xz; [Q(sj7 1’3)] - mlnz; [Q(Sjv LE;)] ’

q(X; = x4ls5) = )
for all 1 < j < n. The independent results are then multiplica-
tively combined to approximate the desired probabilities

P(x1,...,%nls) x H q(xj|s;).
j=1

3.7 Recommendation

Our approach can also be turned into a recommender system. In
contrast to the topic extraction, we use a softmax instead of the
min-max normalisation to translate ()-values into probabilities,

exp{Q(ss, %)}
2. exp{Q(s;, 25} '

The softmax gives us a probability distribution over the state space
of every attribute. The use of the exponential function penalises
even small differences and thus acts like a probabilistic winner-
takes-all. Note that in practice, recommendations have to be com-
puted very efficiently under rigid time constraints. Having a clear
set of winners helps to speed-up the computation by continuously
filtering out items at early stages that cannot make it into the top-m
to save time for more promising candidates.

Given the estimates in Equation (3), the score for item ¢ with
attribute combination z1, . . ., £, is simply given by the product of
the corresponding probabilities, or alternatively, by the sum of the
corresponding log-probabilities, that is,

Pr(X; = zjls;) = 3

score(i;s) = H P(X; = xjls;) ZIOgP(Xj = xj|s5).
=1 =1

The scores impose a ranking on the items and the top-scoring prod-
ucts can be recommended.

4. EMPIRICAL EVALUATION

In this section, we evaluate our approach on an anonymised click
log from Zalando', a large European online fashion retailer. The
data distribution is modified so that no conclusions on customer
data or business figures of the company can be drawn. There are
1,721, 483 user sessions consisting of 24, 353, 852 clicks in total.
Sessions are split after 25 minutes idle time and the average session
consists of 14 clicks. Every click is associated with a timestamp,
the attributes of the viewed item, user ID, and the recommended
items. We focus on attributes colour, gender, category, and price.
There are 62 different colours, 16 genders (including types of ac-
cessories), 61 categories, and 16 discrete levels of price in the log.

4.1 Small-scale Topic Detection

Measuring the performance of topic detection methods using real
world data is difficult as topics are not observed variables but con-
tained only implicitly in the data. We therefore test the topic pre-
diction against the attribute values of the next clicked item. We
translate the distribution in Equation (2) into a discrete set of at-
tribute values. A simple thresholding approach discards unlikely
realisations and returns a set 7 for every attribute 1 < j < n
given a session s = (S1,...,8n),

Tj(s;) = {zjlx; € dom(X;) A q(X; = zj]s;) > c}

'www.zalando.com

where c is a user defined constant. Large values of c thin out the
topic and focus on highly probable attribute values. On the other
hand, small values of ¢ weaken the interpretability and usability of
the resulting topics unnecessarily that may contain many unlikely
realisations. In the first set of experiments, we use ¢ = % and study
variations of the parameter afterwards. The joint topic 7'(s) is then
given as the union over all attributes by T'(s) = Uj_, T)(s;)-

We evaluate the accuracy of the extracted topics for every at-
tribute as well as for the joint topic using indicator functions [[z]]
yielding one if the argument z is true and 0 otherwise. Let T} (s;)
be the topic of an ongoing session and x; the corresponding real-
isation of the next clicked item. The topic prediction is correct if
[« € Ty(s;)]]. The joint topic is then evaluated by concatenating
the individual results with an and-operator,

acc(T,s,i') = [[l"; € T;(s5)]]-

.
L=

Note that high accuracies in individual attributes do not necessarily
indicate a good joint performance as the all attribute values need to
be contained in the topic.

We compare the ensemble approach of Section 3.4 (M1) with
its approximation in Section 3.5 (M2). As a baseline, we deploy
a simple Markov process (MP) that uses estimates P (i’|s) directly
instead of Q(s,1") for the computation of the topic. Thus, its proba-
bilities are proportional to the number of times that item i’ has been
clicked in state s estimated by maximum likelihood. Additionally,
we include LDA [5] as another baseline. To this end, every session
is treated a document where the attributes of the viewed items are
considered the words of the document. The set of words is thus
defined by |J]_, dom(A;) and contains 155 distinct words. We
apply the method by [5] for both estimation and inference of topic
proportions as well as word distribution per topic. At testing time,
LDA determines the topic mixture of the ongoing session based and
computes the probability distribution of attributes according to the
mixture. Thresholding is identical for all methods.

For the first set of experiments, we only use a subset of the data
for evaluation as the exact variant cannot be evaluated on all avail-
able data due to memory issues. In the corresponding subset, there
are 34, 343 user sessions consisting of 722, 179 clicks in total with
the average of 21 clicks per session. We split 70% of the resulting
sessions for training, 20% as holdout, and 10% as test sessions ac-
cording to the temporal nature of the data. Optimal parameters for
M2 and LDA are found by model selection and are given by a = 2,
B = 0.001 for M2 and ar,pa = 0.1 and 100 topics for LDA, re-
spectively. Rewards are positive for clicks on recommended items
as well as adding to cart, and sale actions. Removing items from
the cart is penalised with negative rewards, all other actions realise
areward of zero.

Table 1 shows average accuracies of the best models for Markov
assumptions of order k € {1, 2, 3,4} and LDA. The exact ensem-
ble M1 performs poorly for short histories but improves signifi-
cantly for larger k. We credit this finding to the necessity of taking
chains of consecutive clicks into account. Although the individual
predictions on attribute levels are promising, the joint topic is not
well captured. Further, the high sparsity of small data sample leads
to the predictive accuracy of below 70%. By contrast, the approx-
imate M2 performs much better for short histories and detects the
correct topic in 94% of the cases for k = 1. The performance de-
creases for longer chains. The observed effect originates from the
approximation itself. The data sample is not sufficiently large for
reliably approximating longer histories. We will address this issue
in the next experiment again.



Table 1: Accuracies for the topic detection on a subset.

k | joint | colour gender category price
413369 | 4978 9224 7852  63.96
MP 313770 | 5298 9231 79.50  65.06
213765 | 52.15 9222 79.68  64.24
1]28.06 | 4431 91.85 79.01 56.28
416753 | 8.61 9500 90.70  78.68
M 316956 | 9394 9521 9336  72.01
214062 | 4596 9530 9490  78.39
1| 1647 | 2837 9531 9528  46.55
417533 | 81.92  94.65 90.05  92.38
M2 318952 | 9295 94.83 92.81 94.48
219369 | 9512 9497 94.45  95.00
1]94.14 | 9525 9498 9482 9497
LDA - | 1.65 | 11.76  85.89 52.8 21.14

LDA characterises the next click by dominant attributes of the
ongoing session. The results show that users tend to click on items
with so far unseen attribute values, particularly for price and colour.
However, apart from M2, the joint topics are mostly inaccurate and
do not reflect the performance for individual attributes. The out-
comes of MP show that simply counting frequencies of subsequent
events is not sufficient for achieving state-of-the-art performances.

4.2 Large-scale Topic Detection

In this section, we focus on the approximate ensemble (M2) and
repeat the previous experiment on the whole click log. We split all
available data into consecutive training (70%), holdout (20%), and
test (10%) sets to preserve the temporal nature of the data. Table
2 shows the results for MP and the approximate M2 for histories
of size k € {1,2,3,4} as well as LDA. All three methods exploit
the abundance of data and improve their performance. However,
the overall joint performance of LDA is still far from a real-world
deployment and even for MP still stays constantly below 40%. The
approximate M2 clearly outperforms the baselines and yields im-
pressive joint accuracies of about 90% for all k. The additional
data trades-off the approximation issues observed in the previous
experiment for larger k at the expense of smaller k.

4.3 Analysing the Topics

In this experiment, we study the variation of the detected topics
in the course of the sessions using the experimental setup of Sec-
tion 4.2. We measure the difference of subsequent topics 7'(s) and
T(s") by their Jaccard distance. A large distance indicates rapid
changes in neighbouring topics and either refers to a badly adapted
model or to undetermined users who are just browsing instead of
following a specific goal. By contrast, small distances indicate that
users are very predictable and only search for very particular items
without digressing.

Figure 3 (left) depicts the session on the z-axis and the variation
of neighbouring topics in terms of their Jaccard distance on the
y-axis averaged over all sessions. Unsurprisingly, for all histories
1 < k < 4, the variation decreases rapidly after a few clicks. The
more clicks a user performs, the more feedback is provided to the
system and can be exploited by the model. Except for histories of
length k£ = 4, all models converge quickly to only a few variations.
That is, only very few attribute values are replaced between time
steps. For longer histories £ = 4, we observe more variations
which is also reflected by lower overall accuracies in Table 2.

Figure 3 (center) shows the impact of the topic threshold ¢ on
the average size of the topics for the attribute category. Increasing
the threshold effectively thins-out the topics on average. However,

Table 2: Accuracies for the topic detection using all data.

k | joint | colour gender category price
413956 | 53,50 89,70 7793 71,25
MP 313953 | 52,83 89,70 78,09 71,04
2| 38,37 | 50,78 89,57 77,94 71,09
130,82 | 42,37 89,15 77,29 70,02
41 883 | 91,09 92,61 90,88 92,19
M2 391,13 | 92773 92,45 92,04 92,56
219148 | 92,82 92,46 92,37 92,49
1]91,53 | 92,85 92,4 92,39 92,55
LDA - | 2.84 | 1231 81.18 5122 4171

changing the topic threshold c also impacts the accuracy. Figure 3
(right) shows that tighter topics may fail to capture the user’s intent
and we observe decreasing accuracies for larger values of c. The
actual value of c trades-off the specificity of topics and the accuracy
of the topic prediction.

4.4 Topic-driven Recommendations

We now demonstrate the effectiveness of the topic detection by
translating the detected topics into recommendations according to
Section 3.7. We use again the experimental setup from Section 4.2
and compare the approximate ensemble M2 with a collaborative
filtering using matrix factorisation (CF) and a combination of topic
models and collaborative filtering presented in [31] (TM). Both CF
and TM are the same methods as described in [31], however we
set ar,pa = 0.1, number of topics = 100, and the number of
factors in matrix factorisation = 200 by model selection. To evalu-
ate these two baselines, items are ranked according to the previous
clicks of the actual user as given by the user-item matrix. Note
the conceptual difference of our fMDP and the collaborative filter-
ing approaches. While the former takes a session-based approach
and thus aims at short-term interests, the latter two are user-specific
and could be considered global models for long-term user interests.
Additionally, we incorporate three simple baselines: ranking items
randomly (Rnd), ranking items according to their similarity to the
previously viewed item so that items with the same attributes are
ranked on top (Prev), and ranking items according to their popular-
ity (Pop).

We also wanted to include a sequential MDP-based approach
[28] as another competitor. However, a standard MDP approach as
described in Section 3.1 is defined in terms of the items and turns
out infeasible even for the small sample that we used in Section 4.1.
There are more than 80,000 items in the small sample, leading to a
minimum memory requirement of about 52GB for maintaining two
tables of size 80, 000 x 80, 000, one for transitions and the other for
the Q-values (for £ = 1) using only four byte representations. The
data set we are experimenting with in this section contains more
than 240,000 items. We therefore leave this comparison for future
work.

Figure 4 shows average ranks of the recommendations in the
course of the sessions. Note that the average rank is a variant of
Average Relative Position (ARP) [22]. As the baselines are static
recommender systems that do not exploit the sequential nature of
the data, their performance is more or less constant in the length
of the session; small fluctuations disappear in the figure due to the
log-scaled y-axis. The sequential M2 exploits the temporal nature
of the data and adapts quickly to the topic of the session. The best
method realises a second-order Markov assumption. The figure
could be extended to the right to include longer sessions but the
information gain is rather small as the performance of all methods
does not change significantly.
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Figure 3: Left: Variance of topics. Center: Size of topics for attribute category. Right: Impact of topic threshold.

Table 3 shows aggregated results by averaging the performances
over the length of the session. The baselines perform worse than
M2, and among them, Prev and Pop outperform Collaborative based
methods. The best method for histories of length two realises aver-
age ranks of about 15,000. Although the absolute number appears
quite high, recall that there are more than 240,000 items in the data
set. On average, clicked items are among the top 7% of the ranking
for k = 2.

Table 3: Aggregated Average Ranks (in hundreds)

M2, k =
1 2 3 4 | TM | CF | prev | pop | rnd
174 | 158 | 209 | 270 | 723 | 749 | 272 | 295 | 1213

4.5 Discussion

Tables 1 and 2 exhibit differences in the predictability of the
attributes. Unsurprisingly, gender is always predicted with high
accuracy as it is unlikely that users switch often between genders
within a session. The same is held for the attribute category. In
contrast to gender and category, attributes colour and price prove
more difficult. Apparently, users are somewhat flexible about prices
and colours. Nevertheless, we observe highly accurate predictions
for these attributes for the approximate ensemble M2.

Note that the choice of k depends on the application at hand. Our
results show that the performance of the exact M1 increases with
larger k (Tables 1). However, the larger the history, the longer it
may take to adapt to a change in the topic; for instance because the
user has not found what she was searching for or is distracted by
a completely different item that is also displayed on the page. In
practice, the fMDPs could be reset after cart or purchase operations
by the user. The approximate fMDPs however perform better for
short histories although the effect becomes smaller for larger train-
ing sets. We credit this finding to difficulties in the approximation
caused by sparsity in the data distribution.

Since the internal representation of the factored MDPs is a graph-
ical model, it is straight forward to augment additional variables to
capture the context of the user. A promising candidate seems to be
the time the user spends on the page before clicking. Very short
stays could be an indicator for dissatisfaction, possibly followed
by a change in topic while longer stays may give rise to a careful
examination of the item at hand and a possible cart operation.

Finally, recall the conceptual differences of the fMDP-based rec-
ommender and the collaborative filtering baselines. While the for-
mer takes a session-based approach (short-term interests), the latter
is user-centric and implements the notion of personalisation (long-
term interests). Thus, the two strategies can be considered orthogo-
nal. Aninteresting open questions is therefore whether it is possible
to combine session-based with personalised strategies to obtain the
best of the two worlds.

S. RELATED WORK

Topic detection is a broad field in machine learning, particularly
for processing text. Topics of static data collections such as text
corpora are traditionally identified using Latent Dirichlet Alloca-
tion (LDA) [5] and variations thereof. The evolution of topics in
data streams is for instance detected by modelling time [33] or by
introducing additional dependencies [2]. Other approaches, such
as dynamic topic models [4] and online LDA [1], study segmented
data streams. The idea is to turn topics of previous segments into
priors for the actual time slice. A drawback of these approaches
is that the topics remain constant across segments; effectively the
same topics are re-identified and there is no mechanism to discard
outdated topics or to introduce new ones.

Barbieri et al. [2] extend LDA to a first-order Markov model that
determines topics of interest for collaborative recommendations.
They propose a personalised recommender system based on user
click histories where topics are identified for every user in the sys-
tem. Wang and Blei [31] study LDA with collaborative filtering
and matrix factorisation. They deploy topic models to assess con-
tent similarities in the reduced space of topics. Similarly, Chatzis
[10] proposes to combine collaborative filtering with indian buf-
fet processes for movie recommendations. The three approaches
therefore aim at capturing long-term interests of users and an ap-
plication to short-term goals of a session is not straight forward.
By contrast, Wang and Zhang [32] propose a session aware recom-
mender system that aims to capture the general intention of users
in terms of three predefined and abstract categories: repurchase,
variety-seeking, and buying new products. Note that the topics in
[2, 31, 10, 32] are computed prior to the recommendation and can
thus be considered static.

Markov decision processes (MDPs) [29, 24] are frequently used
for sequential decision-making under uncertainty. Shani et al. [28]
introduce sequential MDPs for recommender systems. Prior to
their work, Zimdars et al. [35] propose a sequential recommender
system where item recommendations are computed by random fo-
rests. Rendle et al. [26] study first-order Markov chains with ma-
trix factorisation for basket recommendations. A reinforcement
learning approach to recommender systems based on Q-learning
has been presented in [30]. Moreover, Karatzoglou [16] combines
temporal and collaborative aspects by minimising regularised loss
functions. We design our approach based on fMDPs to take ad-
vantages of both, MDPs and factorisations. Factored MDPs are
introduced by Boutilier [6].

6. CONCLUSIONS

We presented a sequential session-based approach for detecting
the intention of user sessions on the Web. We phrased the problem
as a topic detection task in terms of item attributes and proposed
to solve the task via factored MDPs. We argued that a straight for-
ward application is infeasible and devised an efficient formulation
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Figure 4: Average ranks for the recommendation task.

by assuming independence of attributes. We showed that factored
MDPs with independent components admit an equivalent represen-
tation as an ensemble of independent fMDPs with structured value
functions. Additionally, we presented an approximation of the en-
semble and evaluated both methods on a large click log. Our em-
pirical results showed that our methods were able to accurately de-
tect topics of sessions. Translating our approach into a topic-driven
recommender system outperformed collaborative baseline methods
simple straw men.
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